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Abstract

A forward intensity model for the prediction of corporate defaults over different
future periods is proposed. Maximum pseudo-likelihood analysis is then conducted
on a large sample of the US industrial and financial firms spanning the period
1991-2010 on a monthly basis. Several commonly used factors and firm-specific
attributes are shown to be useful for prediction at both short and long horizons.
Our implementation also factors in momentum in some variables and documents
their importance in default prediction. The prediction is very accurate for shorter
horizons. The accuracy deteriorates somewhat when the horizon is increased to two
or three years, but its performance still remains reasonable. The forward intensity
model is also amenable to aggregation, which allows for an analysis of default

behavior at the portfolio and/or economy level.
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1 Introduction

Understanding the determinants of default is critical to credit risk management, macro
policy making and financial regulation. Firms may have totally different short-term and
long-term credit risk profiles due to their debt structures, liquidity positions and other
attributes. Naturally, default analysis should address the term structure effect. Major
credit rating agencies usually provide both short-term and long-term credit ratings for
corporates, but the information provided by them typically lacks granularity. The aca-
demic literature has also been lacking as far as the term structure of default probabilities
is concerned. Credit risk modeling can be grouped into two large categories — structural
and reduced-form approaches. In this paper, we model default term structures by an

reduced-form approach.

The first generation of reduced-form models dates back to Beaver (1966, 1968) and
Altman (1968). These studies mainly relied on discriminant analysis whose output is
credit scores which offer only ordinal rankings. The second generation of reduced-form
models, e.g., Ohlson (1980) and Zmijewski (1984), mostly employed binary response
models such as logit and probit regressions. Such methods assess a firm’s likelihood of
default in the next period but remain silent for default prediction beyond one period.
In a recent paper, Campbell, et al (2008) employed a multiple logit model, attempting
to predict bankruptcy for different time horizons. Recent development in reduced-form
credit risk modeling is dominated by duration analysis, such as Shumway (2001), Chava
and Jarrow (2004), Hillegeist, et al (2004).

Duffie, et al (2007) (DSW, henceforth) proposed a doubly stochastic Poisson intensity
model to describe the occurrences of default. The state variables governing the Poisson
intensities in their model are assumed to follow a specific high-dimensional vector autore-
gressive process. Even if one restricts the consideration to a small set of firm attributes,
a large number of firms will simply make the overall dimension of the state variables
very high and render the DSW model’s practical implementation difficult. The need to
specify time dynamics of the state variables in the DSW model is related to multiperiod
default prediction, i.e, generating the term structure of default probabilities. Modelling a
high-dimension time series faces challenges in two aspects. First, it is difficult to come up
with a model that can adequately capture the joint behavior of the attributes for many
firms. Second, implementing the model needs values for the parameters governing the au-
toregressive process. Parameter estimation, however, inevitably requires one to compute
the inverse and determinant of the state variables’ variance-covariance matrix. When the
dimension is high, computational obstacles (computing time and numerical accuracy)
quickly surface. For example, the DSW model employs two common state variables for

all firms and two firm-specific attributes for each of the firms under consideration. If a



sample contains 12,000 firms, which is roughly the sample size of our empirical study, the
dimension of the state variables in the DSW model becomes 24,002, and the estimation

task becomes numerically challenging.

We propose a new reduced-form approach based on a forward intensity construction to
estimate a firm’s default probabilities for different periods ahead. Like the DSW model,
our construction takes into account both defaults/bankruptcies and other types of firm
exits such as mergers and acquisitions. However, our method which relies on estimating
forward default probabilities can produce the term structure of default probabilities with-
out explicitly modelling and estimating the high-dimensional state variable process. Our
default prediction over multiple periods solely uses the known data at the time of per-
forming prediction, and thus circumvents the difficult task of specifying and estimating
the time dynamics for covariates. Our forward intensity approach can be implemented by
maximizing a pseudo-likelihood function constructed with overlapping data to utilize the
available data to the fuller extent. Like the DSW model, the pseudo-likelihood function
can also be decomposed to default and other exit components, making it less numerically
intensive in estimation. Unique to our approach is the nature of the pseudo-likelihood
function which makes it also decomposable for different forward periods. This decompos-
ability in effect turns the estimation of the forward default parameters in a later period
totally unrelated to the parameters governing the earlier periods. Thus, the forward
intensity model’s estimation becomes a non-sequential numerical optimization problem,

and is naturally amenable to a parallel computing implementation.

In addition to computational efficiency, we conjecture that the forward intensity ap-
proach is more robust than DSW model especially for long-horizon prediction.! The
DSW model is essentially an iterative and indirect method where one needs to generate
future random values for the covariates so as to compute the probability of default. If
the dynamics of the covariates are mis-specified, generating future values for the covari-
ates multiple steps ahead may cause serious biases. In contrast, the forward intensity
approach is a direct projection of current event realizations on past data, and is therefore

more likely to be robust to model mis-specification.

Our empirical analysis uses a large sample of the US exchange-listed companies (both
industrial and financial) covering more than 12,000 firms and over one million firm-
month observations for the period from 1991 to 2010. We examine the effects of several
commonly used macroeconomic factors and firm-specific attributes on companies’ one-
month forward default probabilities from an immediate start to as long as 36 months

ahead. We find that a firm’s leverage, liquidity, profitability and volatility are four

'We thank an anonymous referee for pointing this out.



important attributes affecting its forward default probabilities for almost all the horizons
considered. Interestingly, our empirical results suggest that large companies seem to be

able to delay defaults, but cannot fully avoid defaults simply by their size advantage.

We also consider the influence of state variables in terms of both level and trend.
Intuitively, a firm attribute’s historical average (over some period) can distinguish it
cross-sectionally from other firms in a particular dimension. The current value of a firm’s
attribute relative to its own historical average can also reveal its current momentum
and suggests a direction of its future movements. Our empirical analysis indeed reveals
that firm’s distance-to-default (a commonly used variable in default analysis), along with
several other variables, has effect in both dimensions. Although the trending aspect of a
firm’s attribute contains valuable information and enhances prediction power, its effect

seems to be short-lived except for distance-to-default.

Our forward intensity approach actually coincides with the DSW model when the
application is limited to the one month ahead prediction. This is not at all surprising
because forward intensity is basically spot intensity for one period ahead. Our implemen-
tation, however, uses more state variables and also considers the possibility of trending
effect. Statistic tests suggest that both the additional variables and the trending treat-

ment have highly significant impacts.

We also conduct a prediction accuracy analysis based on the commonly employed
cumulative accuracy profile. The results show that the forward intensity approach is
able to generate accurate predictions for short horizons such as one and three months.
Their in-sample accuracy ratios exceed 90%, and the conclusion remains robust when
the sample is split into two cross-sectionally and use one set to predict the other. The
same conclusion holds true when an out-of-sample analysis is performed by rolling the
sample forward over time. When the prediction horizon is extended to six months and
one year, the accuracy ratios drop to the 80% range. If the prediction horizon is further
extended to two (or three) years, the performance drops to the 70% (or 60%) range.
Note that the accuracy ratio for a totally uninformative model is supposed to be 0%.?
Again, the findings for longer prediction horizons are robust when the sample is split

cross-sectionally and rolling over time so that the analysis is out-of-sample.

Our forward intensity model can naturally employ the convolution-based default ag-

gregation algorithm of Duan (2010) to study portfolio behavior. We are able to show

2In the literature, the receiver operating characteristic (ROC) is sometimes used as a performance
metric. According to Sobehart and Keenan (2001), there is a simple monotonic relationship between
accuracy ratio and ROC; that is, accuracy ratio equals 2(ROC — 0.5). A totally uninformative model
thus has an ROC equal to 0.5.



that the predicted number of defaults is quite close to the actual numbers of defaults for
the US corporate sector over the intended period when the prediction period is one and
three months. For longer prediction periods, the performance is not as good but is still

able to reflect the overall default pattern over the past twenty years.

Following Duan’s (2010) treatment of distance-to-default, we are able to include fi-
nancial firms in our analysis. Particularly, we single out Lehman Brothers as a case
of interest. The analysis reveals that three months prior to Lehman Brothers’s filing
of Chapter 11 bankruptcy, the model has already suggested a substantially raised term
structure of default probabilities. For example, the estimated probability of default in one
year, predicted three months prior to Lehman’s bankruptcy, had already reached about
7%. Interestingly, the peak of the forward default probability curve moved to around the
fifth to sixth month, which is very close to its actual bankruptcy filing month.

To compare the forward intensity approach with the DSW model, we conduct addi-
tional prediction accuracy analysis. We employ the four covariates used in Duffie, et al
(2007) for both methods. For the DSW model implementation, we also use the same
vector autoregressive model as in that model. Because of the total number of covariates
involved is too large to estimate, we reduce the number of firms in our sample by random
sampling to 3,000 non-financial firms, a size comparable to the DSW implementation.
We restrict the comparison analysis to non-financial firms because Duffie, et al (2007),
like the great majority of the default /bankruptcy literature, excluded financial firms from
their study. Our results show that both methods perform similarly for short-horizon pre-
dictions. When we increase the prediction horizon beyond one year, the DSW model
outperforms in-sample but seriously underperforms out-of-sample. The inconsistent in-
sample and out-of-sample performances of the DSW model is likely due to over-fitting
arising from its use of a large number of parameters in modelling the joint dynamics of

the covariates.

2 A forward intensity approach to multiperiod de-

fault prediction

The Poisson process with stochastic intensities is often used to model the occurrence of
defaults/bankruptcies. By the so-called doubly stochastic process approach, the stochas-
tic intensity is a function of some state variables, either observable or unobservable, but
the dynamics of these state variables are not affected by default. Since the relationship is
unidirectional from state variables to the Poisson process, such a doubly stochastic model

is easy to work with both in terms of computing quantities of interest and estimating the



model parameters. This approach has been widely applied in the literature, for example,

Dulffie, et al (2007).

Mergers/aquisitions happen routinely. A public company traded in a stock exchange
can be delisted for a variety of reasons. Naturally, default/bankruptcy is not the sole
reason that a firm leaves the sample. Considering other forms of exit is critical in the
analysis of default, because a default cannot happen after a firm has already exited due to
other reasons. Exit due to reasons other than default/bankruptcy is usually modeled as
another doubly stochastic process independent of the default process. It is worth noting
that default and other form of exit are in principle mutually exclusive events. Thus,
they are competing as opposed to independent risks. When they are modeled as two
independent Poisson processes, the probability of joint occurrence happens to equal zero,

blurring the distinction between competing and independent risks.

Default and other exit for the i-th firm in a group are governed by two indepen-
dent doubly stochastic Poisson processes — M;; with stochastic intensity \; and L; with
stochastic intensity ¢;. Ay and ¢; are instantaneous intensities and are only known
at or after time ¢. Applying the standard argument, the probability of a standing firm
surviving the period [t,t + 7] equals E; [exp (— tHT()\iS + gzﬁis)ds)]. The probability of

default in the period [t, ¢+ 7] is E} [ :JFT exp (— J;s(/\iu + ¢¢u)du) )\isds] . These quantities
can only be computed with the exact knowledge of the stochastic processes: \;; and ¢;;.

We contend that a more convenient way is to use the device of forward intensity rate.

First we define the spot combined exit intensity for default and other exits together
for the period [t,t + 7], and through which we deduce the forward exit intensity. Denote
by Fi(7) the time-t conditional distribution function of the combined exit time evaluated
at t + 7. We assume that it is differentiable.

iy = = Far) B[ (LT Ot o)) 0

T T

Obviously, exp[—(7)7] becomes the survival probability over [t,t + 7].

Assume that ;(7) is differentiable. The forward combined exit intensity is defined
as
Fy(7)
1 — Fyu(7)

Thus, ¢u(7)7 = [§ gie(s)ds.

= tir(T) + Y (T)7- (2)

git(T)

Finally, we define the forward default intensity censored by other forms of exit. Denote

the default time of the i-th firm by 7p; and the corresponding combined exit time by 7¢;.



Naturally, 7¢; < 7p;. Let P(+) denote the time-¢ conditional probability.
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and the default probability over [t,¢ + 7] becomes [ e~¥it(*)s f;,(s)ds.

Although we motivate the forward intensity model using a reduced-form approach
involving doubly stochastic Poisson processes, the method conceptually encompasses the
structural approach or a combination. For example, a combination can be (1) default
is driven by a structural argument of asset value falling below promised debt payment,
and (2) other forms of exit occur due to a Poisson event. Duffie and Lando (2001)
argued that instantaneous default intensity does not exist unless the default time is
totally inaccessible. Unfortunately, the structure model with the asset value driven by
a diffusion process (or jump-diffusion process) is accessible (or neither accessible nor
totally inaccessible). Therefore, such structural models cannot be given an intensity
interpretation. Chen (2007), however, showed that forward intensity exists even for those
structural models. Therefore, the forward intensity approach is not only more natural for
multiperiod default prediction as will be demonstrated later, but also conceptually more

widely applicable.

Instead of modeling \;; and ¢;; as some functions of state variables available at time
t, we will later deal with f;;(7) and g;(7) directly as functions of state variables available
at time ¢ and the forward starting time of interest, 7. Moreover, we need to ensure that
fit(T) < gi(7) to reflect the fact that default intensity must be no greater than combined

exit intensity.

Let Xyt = (®it1, Tiro, - ,Tirx) be the set of the state variables (stochastic and/or
deterministic) that affect the forward intensities for the i-th firm. These variables may
include two types of variables: macroeconomic factors and firm-specific attributes. There-
fore, X;; and X;; may share some common elements. f;(7) and g¢;(7) can be all kinds
of functions of X;; as long as they are non-negative and g;;(7) > f;:(7). For convenience,
we let

fi(r) = exp(ao(T) + o (T)zitg + ao(T)Tio + - - p(T)Tit i) (5)
gi(T) = fulr) +exp (Bo(7) + L1(T)zi1 + Bo(T)Tiro + - - - Bi(T)Tir ) (6)

Note that f;;(7) and g;;(7) do not need to share the same set of state variables. This can

be achieved in the above specification by setting some coefficients to zero.



When 7 = 0, our forward intensity set-up is the same as the spot intensity formulation
of Dulffie, et al (2007). The reason for using the forward intensity formulation is to deal
with multiperiod default predictions without having to specify the dynamics for state
variables, which in turn avoid estimating the state variable models and simulating these

variables in computing predicted default probabilities.

We need to discretize the model for empirical implementation, and for that we set one
month as the basic time interval, i.e., At = 1/12. To simplify notation, from this point
onwards, we view t =0,1,2,--- and 7 =0,1,2,--- as time sequences with an increment
of one month (and so are 7p; and 7¢;). The forward intensities in the discretized version,
i.e., fu(7) and g;(7), should be understood as at time ¢ for the period [t + 7,¢ + 7 + 1].

We are interested in the following quantities in the discretized model for the firms

that have not yet exited at time ¢. They can all be computed from f;;(7) and g;(7).

1. Forward default probability at time ¢ for the period [t + 7,t + 7 + 1]:

Pt+r<mpi=10i<t+717+1) = e Vin(mITAL (1 — e_f“(T)At) (7)
2. Forward combined exit probability at time ¢ for the period [t + 7, + 7 + 1]:
Pt +7 <70 <t+7+1) = Vulnrat (1 — e_g“(T)At) (8)

3. Cumulative default probability at time ¢ for the period [t,t + 7]:

T—1
Pt<tpi=1ci <t+71)= Z e~ Vir(s)sAt (1 — e_f“(s)At) 9)
s=0

4. Spot combined exit intensity at time ¢ for the period [t,t + 7]:

Yulr) =~ [Wulr = 17 = 1) + gulr 1) (10)

Note that 1;;(0) need not be specified because it is irrelevant.

3 Estimating the forward intensity model

3.1 Overlapped pseudo-likelihood function

First, we extend our notations used in the preceding section. Suppose that our sample

period is from 0 to 7" measured in months. Let N be the total number of companies. For



firm 4, we let ty; be the first month that it appeared in the sample. 7p; is the default
time and 7¢; is the combined exit time. If a firm exits due to default, then 7p; = 7¢;,
and otherwise, 7¢; < 7p;. The covariates X;; consist of two parts X;; = (Wy, Uy). W,
are the factors common to all firms, and U;; are the firm-specific variables which cease
to be observable after a company exits the sample. Suppose 7 is the intended prediction

horizon measured in months with each equal to At = 1/12.

We assume firms’ survival and default probabilities depend only upon the common
factors and firm-specific attributes. Hence, different firms are conditionally independent
among themselves. If there is any dependency, it must arise from their sharing of the
common factors and/or any correlation among the firm-specific attributes. This assump-
tion is in essence similar to the doubly stochastic assumption (also known as conditional
independence assumption) used in the traditional intensity model. One firm’s exit does
not feed back to the state variables. Neither does it influence the exit probabilities of
other firms. We denote the model’s parameter set by o = {a(0), a(1),--- ,a(r — 1)} and
B =4p(0),5(1),---,B(r — 1)}. The pseudo-likelihood function for prediction horizon 7
can be expressed as

N T-1

Z(a, B;70, 70, X) = [[ [ Lriale. B) (11)

i=1 t=0

where

ZLriila, B) =lggi<troistrry Pe(Toi Toi > 6+ 7T) + Lo, <t rpi=rei<t+ry Pe(Tpis Tpi = Toi <t +7)
+ Ltgi<tirpigreiror<tiry Pe(Toi Tpi # Toiketei <t +7) + Loty + Lirei<ty

and

T7—1
Pi(1ci;Toi >+ T) = exp [— Zgit(s)At
s=0

P(Tpi;Tpi = Tei <t+T)
1 —exp [~ fi(0)At], ifrpi=t+1

Tp;—t—2

exp [— > git(s)At} {1 —exp|—fulrpi —t—1DAt]}, ift+1<mp <t+r7
s=0
Py(1ci; i # Toi&toi <t +T)
exp|— fir(0)At] — exp[—g;(0)At], ifroi=t+1
T i7t72
= exp [— CZ git(s)At} X
s=0
{exp|[—fu(Tci —t — 1)At] —exp[—gu(Tci —t — DA}, ift+1<70; <t+7

with At = 1/12; fi(s) and gi(s) as defined in equations (5) and (6). The first term on
the right-hand side of the pseudo-likelihood function is the probability of surviving both

9



forms of exit. The second term is the probability that firm defaults. The third term is
the probability that firm exits due to other reasons. If the firm does not appear in the
sample in month ¢, then we set the pseudo-likelihood to 1, which is transformed to 0 in

the log-pseudo-likelihood function.

The pseudo-likelihood function .Z. can be numerically maximized to obtain estimates
& and B Note that when 7 > 1, the above pseudo-likelihood is constructed with ob-
servations from overlapped periods. As an example of 7 = 2 at a particular time point,
default over the period that starts one period ahead will be correlated with the similar
default event corresponding to the next time point due to an overlapping common period.
Because of the overlapping nature of the pseudo-likelihood function, the associated infer-
ence is not immediately clear, however. This overlapped pseudo-likelihood function, for
example, violates the standard assumption. We thus derive the large sample properties
in Appendix A.

3.2 Decomposable pseudo-likelihood function

Because the pseudo-likelihood function (11) is the product of separate terms involving
a and 3, we can maximize its two components separately to obtain & and B, which is
similar to Proposition 2 in Duffie, et al (2007).

Moreover, the pseudo-likelihood function for a (or 3) can be further decomposed to
separate terms involving «a(7) (or (7)) corresponding to different 7’s. Therefore, we
can obtain the maximum pseudo-likelihood estimates & and B without having to perform
estimation sequentially from shorter to longer prediction horizons. The horizon-specific

pseudo-likelihood functions are

Z(a(s)) = H T Ziiafs), s=0,1,--- 7—1 (12)
266 =T T] a6, s=01 .71 (13
where

ZLi(a(s)) =it <tirestrst1y exp [ fuls) At]
+ Ltgi<t,rpimroi=ts+1} {1 — exp [— fu(s) At]}
+ tgi<tirpiresmo=trst1y €XP [— fir(s) At]
+ Loty + Lirci<trs+1}
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Zi+(B(8)) =Litg<tiro>trst1y exXp{—[git(s) — fir(s)] At}

+ Lt <t.rpi=roi=t+s+1}
+ Ytg<tirpigronro=trs+1} {1 — exp [—(gir(s) — fi(s))At]}
+ Liggisey + Lrei<trst1)

Note that

git(s) — fu(s) = exp (Bo(s) + B1(s) w1 + Lo(S)Tia + - - Be(s)Tir) -

4 Data and the choice of covariates

4.1 Data

Our data set is a large sample of U.S. public firms over the period from 1991 to 2010.
The stock market data are from the CRSP monthly and daily files. We only include
companies traded on NYSE, AMEX and Nasdaq (exchange code 1 to 3) with share
code 10 and 11 (common stocks). The accounting data are taken from the Compustat
quarterly file. Since the accounting statements are usually released several months after
the reporting period, we lag all the accounting items by three months. If the accounting
variable is missing, we substitute it with the closest observation prior to the relevant date.
Our default and bankruptcy data are obtained from three different sources. We use the
CRSP delisting code “574” for bankruptcy. We also identify a delisting as bankruptcy
if the delisting reason is “02” in Compustat.® A default or bankruptcy is also recorded
if the CACS function of Bloomberg indicates so. Similar to Shumway (2001), firms that
defaulted or filed for any type of bankruptcy within 1 year of delisting are considered
to be in default status by the time of delisting. There are altogether 12,225 companies
(including financial firms) giving rise to 1,066,337 firm-month observations in our sample.
Table 1 summarizes the number of active companies, defaults/bankruptcies and other
exits each year. The summary statistics show, as expected, that the overall default rate
is low ranging between 0.3% and 3.2% of the firms in each sample year. Other forms of

exit are significantly higher, ranging from 5.1% to 13.7%.

4.2 Covariates

We use the following set of common factors and firm-specific attributes to characterize

the forward intensity functions:

1. SP500: trailing 1-year return on the S&P500 index.

3Duffie, et al (2007) regarded both “02” and “03” as bankruptcy. However, we have confirmed with
Standard & Poor’s that code “03” stands for liquidation for any reasons.
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2. Treasury rate: 3-month US Treasury bill rate.

3. DTD: firm’s distance-to-default, which is a volatility adjusted leverage measure
based on Merton (1974). The DTD is estimated once a month using the preceding
one year of daily equity values. To include financial firms in our analysis, we follow
Duan’s (2010) adjustment method to include firm’s liabilities beyond short- and
long-term debts. The model parameters are estimated by the transformed-data
maximum likelihood method in Duan (1994, 2000). The parameter estimates are
then used to compute DTDs and the last valid DTD is the one used as the covariate.
The methodological details are provided in Appendix B.

4. CASH/TA: ratio of the sum of cash and short-term investments to the total assets.
5. NI/TA: ratio of net income to the total assets.

6. SIZE: logarithm of the ratio of firm’s market equity value to the average market
equity value of the S&P500 firm.

7. M/B: market-to-book asset ratio.

8. SIGMA: 1-year idiosyncratic volatility, calculated by regressing individual monthly
stock return on the value-weighted CRSP monthly return over the preceding 12
months. SIGMA is the standard deviation of the residuals from the regression.
Following Shumway (2001), we treat SIGMA as missing if there are less than 12

monthly returns.

Our DTD differs from that of Duffie, et al (2007) in two aspects. First, they estimated
the parameters of the Merton (1974) model for each firm once and for all using the entire
sample (monthly data) instead of using a moving window approach, which in a sense
has inappropriately peeked into the future. Second, we have adopted a different debt
specification by incorporating other liabilities, which in turn allows us to include financial

firms.

The first three variables were used in Duffie, et al (2007). They also used firm’s own
one-year trailing return as a covariate, but our analysis shows that it is insignificant after
incorporating other variables. We also considered several other covariates frequently used
in the previous literature, but didn’t include them due to either lack of significance or

creating a serious missing value problem.

Interestingly, we discover that both trend and level of some firm-specific attributes
play an important role. It is not at all surprising to find that momentum plays a role

in predicting defaults. For example, other things being equal, two firms with same DTD

12



are likely to face different default likelihoods if one firm’s DTD has been deteriorating in
the past few months whereas the other firm has experienced improvement in its DTD.
We compute the average of a variable over the preceding 12 months, and denote it by
the subscript “level” to reflect the recent level of the variable. We also calculate the
difference between its current value and the 12-month moving average, and denote it by
the subscript “trend”. The “trend” measure proxies for the trending aspect of a variable.
We found both trend and level measures for DTD, CASH/TA, NI/TA and SIZE to be
significant. To dampen the effect of outliers, we winsorize each of the above firm-specific
attributes. We cap all the observations at the 99.5 percentile value. Similarly, all values
are subject to the floor at the 0.5 percentile value. The summary statistics and correlation

matrix for the firm-specific attributes are reported in Tables 2-3.

The massive US governmental interventions during the 2008-09 financial crisis are
likely to have significant impact on the default probabilities of US companies. To factor
in the possible bailout effects, we add a common term \exp{—d(t — tp)}1i~i, to the
forward default intensity function where ¢z denotes the end of August 2008. This bailout
dummy variable is set to zero until September 2008 when the US government starts to
bail out AIG. The coefficient A as well as the decay rate d can be estimated by maximizing
the pseudo-likelihood function. Since our data set has limited number of time periods
after September 2008, we only employ such specification for the forward default intensity
functions with horizons less than one year. Specifically, we employ the following forward

default intensity function in the empirical study:

Ju(T) = exp {A(T) exp[=0(T)(t = tB)]Listy + @0(7) + r (7)1 + - (7)1}

where 7 =0,1,2,--- ,11.

5 Empirical results

5.1 Parameter estimates

We present in Tables 4-5 the maximum pseudo-likelihood estimates for «(7) and [(7)
with different 7 ranging from 0 month to 35 months. To show the impact of various
factors/attributes on firms’ default probabilities, we plot in Figure 1 the estimated co-
efficients corresponding to different forward starting times. Also plotted is the 90%

confidence interval for each variable used in the forward default intensity function.

The bailout coefficients are negative and significant for all points on the term structure
that we have computed (up to 7 = 11), which suggests that firms’ default probabilities
have been lower than they would have been if the government did not intervene post-

Lehman Brothers” bankruptcy filing in September 2008. The exponential decay rates are
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positive as expected, but the estimates are insignificant possibly due to the limited data
after September 2008.

In terms of the trailing 1-year S&P500 index return, the forward default intensity
coefficients for most of the prediction horizons are positive but their magnitudes first
decrease with the prediction horizon and then rise later. What it suggests is that when
the equity market performs well, firms are more likely to default, a result seems counter-
intuitive. This could be caused by the correlation between the S&P500 index return and
other firm-specific attributes. For example, as suggested by Duffie, et al (2009), that
“after boom years in the stock market, a firm’s distance to default overstates its financial

health”. Hence, the S&P500 index return may simply serve as a correction.

The forward default intensities are estimated to decrease with the 3-month Treasury
bill rate in the short run but to increase in the long run. The signs of the coefficients at
short horizons are consistent with the fact that the short-term interest rate is typically
lowered by the US Federal Reserve to stimulate the economic growth during recessions
and increased to fight inflation during expansions. The opposite signs of the coefficients

may simply reflect the business cycle effect.

The estimated forward default intensities decrease with firm’s moving average of
distances-to-default for all prediction horizons. Although our distance-to-default measure
is somewhat different, this finding is consistent with those reported in the literature such
as Hillegeist, et al (2004), Duffie, et al (2007), and Bharath and Shumway (2008), show-
ing that distance-to-default is a highly useful attribute for differentiating a firm’s credit
risk from other firms. Moreover, we find that forward default intensity also decreases in a
significant manner with the distance-to-default trend for all prediction horizons analyzed.
To our knowledge, this is the first study that the distance-to-default trend measure is

used to characterize default likelihood.

The CASH/TA variable captures the liquidity position of a company. Other things
being equal, a firm with more liquid assets available to meet interest and principal pay-
ments is more likely to avoid default. The forward default intensities are estimated to
decrease with both the trend and level of CASH/TA, but the trend measure loses its
significance when the prediction horizon becomes longer. This suggests that the liquidity

trend measure is more indicative of short-run default likelihood.

We measure a firm’s profitability by the NI/TA ratio. A firm’s ultimate existence
is based on the profitability of its business. This measure is expected to play a role in
the default/bankruptcy analysis. Bharath and Shumway (2008) found that this measure

provides significant predicting power in addition to distance-to- default. We also find that
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estimated forward default intensities are strongly decreasing in the level of profitability
for all prediction horizons considered. The trend measure for profitability turns out to

be significant for shorter prediction horizons.

Firm size has long been regarded as an important predictor for default/bankruptcy
ever since the early days of reduced-form modeling. Large firms are usually thought to
have more diversified business lines and financial flexibility than smaller firms, which may
help them better weather financial distress. Large firms are also more likely to benefit
from a bailout by government simply because they may be “too big to fail”. Our results
show that forward default intensities decrease with size in the short run but increase in
the long run. This means that other things being equal, large companies can postpone
defaults rather than fully avoid them. The trend measure of size can be viewed as a proxy
for a firm’s growth pattern. The forward intensities are found to be decreasing in this
trend measure only for short prediction horizons, indicating that fast growth may lower
default likelihood in the short run.

Market-to-book asset ratio is a mixed measure for the market mis-valuation and future
growth opportunities. If the market mis-valuation effect dominates, then the forward
default intensities should be increasing in market-to-book asset ratio. Otherwise, the
signs of the coefficients should be negative. Our results show that after controlling for
other covariates, estimated forward intensities are increasing in market-to-book asset
ratio for most of the prediction horizons, which is consistent with Campbell, et al (2008)
although the estimations are usually insignificant. The effect of market-to-book asset
ratio on default probability can be further studied by decomposing this measure into mis-
valuation and growth option components using the methodology developed in Rhodes-
Kropf, et al (2005). However, our interest here is not on finding how market-to-book
asset ratio affects a company’s default probability exactly and we will leave this matter

to future research.

The idiosyncratic standard deviation measure is first employed by Shumway (2001),
who argued that “If a firm has more variable cash flows (and hence more variable stock
return), then the firm ought to have a higher probability of bankruptcy.” Our finding is
consistent with Shumway’s (2001) argument. The forward default intensities are strongly

increasing in this idiosyncratic risk measure for almost all the horizons considered.

Our estimates of the forward intensity function for exits due to reasons other than
default are presented in Table 5. All common factors and firm-specific attributes used in
the forward default intensity functions continue to be relevant. The results show that all
variables are significant even though they may not be so for all prediction horizons. We

skip the detailed discussions here to conserve space.

15



5.2 Aggregate number of defaults

At each month-end, we compute the predicted number of defaults among the active firms
in the sample for a prediction horizon. We then compare it with the observed number of
defaults in the intended prediction period. We repeat this for the entire sample and for
different prediction horizons. Figure 2 plots the comparisons for the following horizons: 1
month, 3 months, 6 months, 12 months, 24 months and 36 months. The bars depict the
observed numbers of defaults and the solid line corresponds to the in-sample predicted
values where the parameters are estimated using the whole sample. We also employ an
expanding window approach to generate the out-of-sample results that are represented
by the dashed line. At each month-end starting from January 2001, we re-estimate the
model using all the data available up to that time and compute the predicted number of

defaults for different prediction horizons.

For shorter horizons, our in-sample predictions fit the subsequent realizations quite
well. However, as the horizon increases, the solid line deviates from the bars, implying
a deteriorating performance in the longer run. Generally speaking, our in-sample long-
run results overstates the overall credit risk in the beginning of the sample period and
understates the overall credit risk towards the end of the sample period. The out-of-
sample predictions are close to the in-sample ones for most periods except for the internet
bubble burst period and the 2008-09 financial crisis. These two periods are, however, quite
unique from a historical perspective, which makes it harder for the estimated model to

anticipate the default behavior out-of-sample.

There are many possibilities for the model’s deteriorating performance for longer
prediction horizons. One natural speculation is that our model has missed out some
variables that are capable of reflecting long-term credit risk. A potential quick fix is
to introduce the frailty effect as suggested in the previous literature such as Koopman,
et al (2008) and Duffie, et al (2009) or to employ the regime-switching approach as
in Chuang and Kuan (2010). Koopman, et al (2009a&b) studied the relation between
macroeconomic fundamentals and cycles in defaults and rating activities. They found that
portfolio credit risk models which are solely based on observable common risk factors omit
one of the strongest determinants of credit risk. By accounting for the latent frailty factor
or hidden regimes, one may be able to improve our forward intensity model. Another
possibility is to experiment with different functional forms in relating the forward intensity

to the covariates.
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5.3 Prediction accuracy

In this section, we employ the cumulative accuracy profile and its associated accuracy
ratio to evaluate our model’s prediction accuracy. The cumulative accuracy profile ex-
amines a model’s performance based on risk rankings. A detailed description can be
found in Crosbie and Bohn (2002) and Vassalou and Xing (2004). To check our model’s
in-sample performance, we estimate the cumulative default probabilities for each firm-
month observation employing the parameter estimates reported in Tables 4-5 where all
the firm-month observations are included in the estimation. Figure 3A plots the cumu-
lative accuracy profiles for the prediction horizons: 1 month, 3 months, 6 months, 12
months, 24 months and 36 months. Table 6 (Panel A) reports the in-sample accuracy
ratios. The predictions for short horizons are very accurate with the accuracy ratios
for 1 month and 3 months prediction exceeding 90%. The accuracy ratios for 6 months
and 12 months are also very good with their values staying above 80%. As the horizon
increases to 24 months and 36 months, the accuracy ratios reduce to 73.44% and 65.69%,

respectively.

We further examine the prediction accuracy for two sub-samples. One sub-sample
comprises only financial firms (SIC between 6000 and 6999) and the other sub-sample
includes all non-financial firms. The accuracy ratios for the non-financial sample are quite
close to those of the full sample. The in-sample prediction for financial firms is actually
more accurate for horizons no more than 2 years, but less accurate when the prediction

horizon is increased to 3 years.

We also implement out-of-sample analysis to ascertain the model’s performance. First,
we randomly and equally divide all companies into two groups: the estimation group and
the evaluation group. Then we estimate the parameters using the estimation group
and apply the estimated coefficients to the evaluation group to generate the cumulative
accuracy profiles and to compute the associated accuracy ratios for different prediction
horizons. Figure 3B plots the cumulative accuracy profiles for this out-of-sample analysis,
and Table 6 (Panel B) reports the accuracy ratios. The results show that the model is very
stable in the sense that the accuracy ratios in the cross-sectional out-of-sample analysis

are very close to those obtained from the in-sample analysis.

An out-of-sample analysis in the time dimension is also conducted. Similar to what
we have done in the last section, at each month-end starting from January 2001, we
re-estimate the model with all the data available up to that time and compute predicted
default probabilities for different prediction horizons. This analysis is more indicative
of the performance of the model in line with the situation in real applications. Figure

3C plots this out-of-sample performance result based on the cumulative accuracy profile.

17



Their out-of-sample accuracy ratios are reported in Table 6 (Panel C). Again, the accuracy
ratios are usually very close to the in-sample results and are even higher for longer

prediction horizons.

5.4 A case study of Lehman Brothers

We use Lehman Brothers as an illustrative example to see whether the term structure
of predicted default probabilities is informative. Our analysis is conducted in the out-
of-sample sense employing only data that were available at the time of computing the
term structure. Lehman Brothers filed for the Chapter 11 bankruptcy on September
15th, 2008. We plot in Figure 4 the estimated term structure of forward and cumulative
default probabilities at several time points prior to its bankruptcy filing. On the same
graph, we also plot the forward and cumulative default probabilities for Merrill Lynch,
Bank of America as well as the average values of the US financial sector. Our results
reveal that the term structure is very informative, particularly in light of other financial

firms over the same time period.

The first set of two plots shows the estimated term structure of forward default prob-
abilities and that of cumulative default probabilities in September 2005, which was 36
months before Lehman Brothers’ bankruptcy filing. The term structure for the forward
default probabilities was upward sloping, making the cumulative default probability rising
faster when the prediction horizon increases. The predicted cumulative default proba-
bilities were quite low in value, however, with the 1-year cumulative default probability
being 0.2% and 3-years cumulative default probability being around 1.7%. This result
suggests that the market did not foresee any problem with Lehman Brothers three years
prior to its bankruptcy filing. Lehman Brothers had its distance-to-default at 2.7 and
was trending up by comparing with its preceding 12-month average of 1.5. The company
also had enough liquid assets with CASH/TA ratio higher than 25%. Its profitability
was, however, less than 1%, which possibly led to the upward sloping forward default

probability term structure. The same pattern applied to other financial firms as well.

The second set of plots is the term structures in September 2006, which was 24
months before its bankruptcy. The term structure of forward default probabilities was
hump-shaped and peaked at around 24 months. The 1-year cumulative default probability
rose to 0.3% while the 3-years cumulative default probability rose to 2.4%. The stock
market was bullish then with the S&P500 index increasing by over 8% in the previous
year. Lehman Brothers remained highly liquid then. Its distance-to-default reduced to

1.2, and net income remained less than 1% of its book asset value.

The third set of plots presents Lehman Brothers’ term structures of forward and cumu-
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lative default probabilities in September 2007, which was 12 months before its bankruptcy
filing. The forward curve remained hump-shaped with the peak moving to 16 months.
The 1-year cumulative default probability further rose to 1.2% and the 3-year cumulative
default probability rose significantly to 5.3%. The S&P500 index increased by over 14%
in the previous year. But Lehman Brothers’ distance-to-default dropped to 0.1 and its

stock had lost by more than 10% over the previous twelve months.

The last set of plots is the term structures for Lehman Brothers in June 2008, just
3 months before its bankruptcy filing. The company’s short-term credit risk reached its
historical high. The peak of the forward default probability curve moved to 6 months. The
1-year cumulative default probability increased sharply to 6.6% which is about 30 times
of the value 3 years earlier. The 3-year cumulative default probability climbed to 12.4%.
The stock market turned bearish with the S&P500 index dropping by almost 15% in the
previous year. Lehman Brothers’ distance-to-default further decreased to -1.7. And the
company’s stock price also reached the lowest level in 5 years then. Interestingly, other
US financial firms did not follow Lehman Brothers’ pattern. This case analysis seems
to suggest that our forward intensity model is highly informative about the dynamic

evolution of Lehman Brothers’ default prospect.

5.5 Parameter smoothing

As shown in Figure 1, the shapes of the parameters’ term structures seem to exhibit
regularity. Simplification can be obtained by applying some function to describe these
term structures. The resulting functions may also be used for interpolation /extrapolation.
We conduct additional accuracy analysis using the smoothed parameters to determine
whether smoothing causes deterioration in performance. We employ the method as in
Nelson and Siegel (1987), which was originally developed to model the term structure of
interest rates. We apply the method to the term structure of each parameter appearing
in the forward intensity function. For each set of parameters, 0(7),7 = 0,1,2,---, we
assume the parameter value is a function of the forward-starting time according to the

following Nelson-Siegel function:

_ e)i-p/(d—T/d) B { - ef—p/(d—T/d)] B exp(—T/d)}

0() = Bo +511

We apply the parameter estimates obtained earlier and fit the above function by the
least square critierion to obtain the parameters: (g, 81, (2, and d. Instead of using the
original parameter estimates, we apply the smoothed parameter values in conducting
default predictions. The result of the accuracy ratio analysis based on the smoothed
parameters are reported in Table 6 under “Full sample (smoothed)”. It is clear that the

results are very close to those without parameter smoothing. No material deterioration
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in prediction accuracy indicates that the forward intensity model can be implemented
with a much smaller set of parameters; for example, in the case of 36 months and for
each covariate, one achieves the reduction from 36 parameters to just four Nelson-Siegel

parameters.

5.6 The forward intensity model vs. the DSW model

The forward intensity model has two advantages over the DSW method. First, to generate
the default probabilities under the DSW model beyond the immediate period, a high
dimensional time series model must be specified. A suitable model that can adequately
reflect the joint dynamics of firms’ attributes is hard to come by, however. Applying an
ad hoc model will run the risk of seriously mis-specifying the system. Apart from the
difficulty of model specification, estimating a very high dimensional time series model can
be numerically challenging. It is obvious that the joint system will likely involve a high-
dimensional variance-covariance matrix. Computing its inverse and determinant will be
required for estimation, but the task will be complex and numerically expensive due to
its high dimension. In contrast, the forward intensity approach completely bypasses the

model specification and estimation for the covariates.

There is a basis to conjecture that the forward intensity method will perform better
vis-a-vis the DSW model. The DSW model relies on an indirect method of assessing
default probability beyond the immediate period. It needs to simulate the joint dynamics
of the covariates forward in order to compute the conditional default probabilities for a
future period. Averaging is then performed over the conditional default probabilities
to obtain the final default probability for the future period of interest. Its application
requires an auxiliary system for the covariates, and the auxiliary system can potentially
introduces serious model specification error and parameter uncertainty in light of its very
high dimension. In comparison, the forward intensity approach forms a direct projection
of the current default realizations on the past data. Therefore, this direct method is more
likely to be robust to model mis-specification and is also free of parameter uncertainty

introduced by the auxiliary system.

To study the performance of the forward intensity model versus the DSW model,
we employ the same covariates as in Duffie, et al (2007); they are: the trailing one
year S&P500 index return, the three month treasury rate, firms’ distance-to-default?,

and firms’ trailing one year stock return. We also use the same autoregressive model to

4The method that we use to compute distance-to-default is different from the DSW model as described

previously.
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describe the covariates as in the DSW model.® Duffie, et al (2007) used less than 3,000
firms in their study, and all were non-financial companies. But our sample is considerably
larger and contains more than 12,000 companies including financial firms. Estimating
the joint autoregressive model for our sample becomes numerically unworkable due to
its exceedingly high dimension (i.e., 6,002 for 3000 firms vs. 24,002 for 12,000 firms).
Therefore, we randomly select a sub-sample of 3,000 non-financial firms to make the
sample size comparable in size and nature to that of Duffie, et al (2007). We stick to the
four covariates as in the DSW model for two reasons. First, we would have to introduce
some ad hoc specification for the covariates that are not already in the DSW model.
Second, introducing even just one additional firm attribute would significantly increase
the dimension of the joint system from 6,002 to 9,002, and for which we would also have

difficulty of numerically estimating the joint dynamics.

Table 7 reports the accuracy ratios for both approaches on the randomly selected
subsample. Panel A consists of the in-sample results where the parameters for both
methods are estimated based on the entire sample period. The performance is close when
the prediction horizon is short. The DSW model clearly outperforms the forward intensity
approach when the prediction horizon is increased beyond six months. However, such
superior in-sample performance of the DSW model is possibly due to the large number of
parameters in the model.® Panel C of Table 7 reports the out-of-sample accuracy ratios.
For the out-of-sample analysis, we follow Duffie, et al (2007) to estimate both models
only once at the end of January 2001 using all the data available up to that time.” The
performance of both models is still close for shorter horizons. But the DSW model begin
to underperform for longer horizons and the prediction accuracy ratios also deteriorate
significantly when comparing with its own in-sample accuracy ratios. Such results suggest

an in-sample overfitting of the DSW method.

5The autoregressive model in DSW is built upon the three-month treasury rate, ten-year treasury
rate, trailing one-year S&P500 index return, distance-to-default and logarithmic asset value. Since the
covariates employed in their intensity model is trailing one-year equity return rather than asset return, we
estimate the model using the logarithmic equity value rather than the logarithmic asset value. However,
we also test the model based on the logarithmic asset value and deducing the needed equity value through

the Black-Sholes formula. The main conclusions still hold.
SWith 3,000 firms, two macroeconomic variables and two firm-specific variables, the number of pa-

rameters in the DSW model would exceed 6,000. However, the forward intensity approach only has
120, 240 and 360 parameters for one-year, two-year and three-year predictions, respectively. Moreover,
increasing the number of firms in the sample will not affect the number of parameters for the forward

intensity approach, but will further increase the number of parameters in the DSW model.
In previous sections, we conduct the out-of-sample analysis by re-estimating the model every month

starting from January 2001. Such frequent re-estimation strategy is, however, intractable for the DSW
model because estimating the joint autoregressive model for the covariates is too computationally de-

manding.

21



The in-sample and out-of-sample comparison was made on different time periods. To
control for the difference, we report a different set of in-sample performance results in
Panel B of Table 7 where the parameters were obtained using the whole sample but
the accuracy ratios are computed using the period 2001-2010 so as to coincide with the
period for our out-of-sample analysis. Comparing Panels B and C, the results show that
accuracy ratios produced by the forward intensity approach are highly consistent in- and

out-of-sample, but the DSW model gives rise to outcomes that are highly volatile.

6 Conclusion

We have developed a reduced-form model for predicting corporate defaults/bankruptcies
over different prediction horizons. Our approach relies on constructing forward intensities.
The forward intensity model is implemented on a large sample of the US public firms
listed on three major stock exchanges. We use two common factors and six firm-specific
attributes to characterize the two forward intensity functions: default and other forms
of exit. We found that some firm-specific attributes influence the forward intensity both
in terms of level and trend. The forward intensity model is shown to perform very well
for shorter prediction horizons. For longer prediction horizons (two to three years), the
model’s performance deteriorates somewhat, but still seems to track the general default
pattern over time. We believe that improvement in performance should be possible with
further research. We also find that the forward intensity approach generate more robust

default predictions as compared to the model in Duffie, et al (2007).

The literature on default/bankruptcy predictions often avoids financial firms. A typi-
cal sample selection criterion adopted in this literature is to exclude financial firms. Given
the importance of financial sector to the economy, such exclusion is clearly undesirable.
We have shown that financial firms can be successfully lumped together with non-financial
firms by applying Duan’s (2010) way of estimating distance-to-default. In fact, we show
that the resulting default prediction model common for financial and non-financial firms

can lead to comparable performance for financial as well as non-financial sectors.

We have demonstrated that the forward intensity approach can be operationally im-
plemented for default prediction for different horizons. Needless to say, it can be used for
credit risk analysis of individual firms such as credit ratings. The forward intensity model
also lends itself naturally to portfolio aggregation. By applying the aggregation algorithm
of Duan (2010) for the standard intensity model, one can generate the default distribution
(in terms of the number of defaults or the size of exposure) for any credit portfolio. In

short, it also offers a practical bottom-up approach to credit portfolio analysis.
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7 Appendix

A Large sample properties of the estimator

We characterize the large sample properties of the estimator based on maximizing the
pseudo-likelihood function in (11). The parameter set is denoted by 6 and its true value
is 0y. log Zn(y,0) is the log-pseudo-likelihood function when there are N companies and
y denotes the companies’ status indicators. To prove the consistency of the maximum

pseudo-likelihood estimator, We make the following assumptions:

Assumption 1. The parameter space © is an open bounded subset of the Euclidean

K -space.

Assumption 2. The covariate vectors {xy} are uniformly bounded and the nonsingular-

ity condition holds such that

N T-1
im N- it(0)At) exp(—hi(0)At)
lim N 7! ( exp(—fu + T4,
oo izlt =\ —exp(—fu(0)A) * 1 —exp(—hy(0)AL) ) "

s a finite nonsingular matrix.

The form of nonsingularity assumption is due to our forward intensity specification.
It should be noted that although only the total number of firms N is required to be
large for the consistency result, the total number of periods T need to be larger than
the dimension of the common attributes in order to allow the nonsingularity condition to
hold. We first state the lemmas used in the proof below. These lemmas are corresponding
to Theorem 4.1.2 and 4.2.2 in Amemiya (1986).

Lemma 1. Under the conditions:

(A) The parameter space © is an open subset of the Euclidean K -space.

(B) log Zn(y,0) is a measurable function of y for all 0 € ©, and 0log Ly /00 exists and
is continuous in an open neighborhood Ny(6y) of 6.

(C) There exists an open neighborhood No(6y) of 0y such that N~'log Zn(0) converges
to a nonstochastic function 1(6) in probability uniformly in 6 in Na(0y), and 1(6) attains
a strict local mazimum at 0,.

Let ©n be the set of roots of the equation

dlog Ly
o0

corresponding to the local mazima. Then for any e > 0,

lim P[ inf (0 —6y)' (6 — 6p) > €] =0

N—o0 0eON
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Lemma 2. Let g;(y, 0) be a measurable function of y in Euclidean space for each i and for
each 0 € O, a compact subset of Fuclidean K-space, and a continuous function of 6 for
each y uniformly ini. Assume E [g;(y,0)] = 0. Let {y;} be a sequence of independent and
not necessarily identically distributed random vectors such that E [supgee |gi(yi, 0)[' 7] <
M < oo for some § > 0. Then N~! ZZ]\LI 9:(yi, 0) converges to 0 in probability uniformly
n 6 e 0.

To prove the consistency, we verify the conditions of Lemma 1. Conditions (A) and
(B) are obviously satisfied. To verify (C), we make use of Lemma 2 and define g;(y,0) =
Z:Ol log %, +(0) — Ej, [ tT:_Ol log fT,M(@)]. 9:(y,0) in a compact neighborhood of 6

satisfies all the conditions in Lemma 2 because of the assumptions. Therefore,

T-1
> log gﬂi,t(e)]

t=0

N T-1 N

NTEY Y log Zu(0) = U(0) = lim NTUY B,

i=1 t=0 =1

uniformly in 6 as N — co. By making use of Assumption 2 as well as the exact function
form of the log-pseudo-likelihood function, we can also prove that [(#) attains a strict

local maximum at @ = 6. Thus, the proof of consistency is completed.

To show the asymptotic normality of the estimator, denote the maximum pseudo-

likelihood estimates as 6 and use the Taylor expansion to obtain

. ) - ] )
Olog Zn(6) _9log L (%) + 9" log Zv (0) (0 — 6y), where 0 lies between 6y and 0

00 00 2000'
~ o\ -1
. 1 8% log Zn(0) 1 dlog Zn(6y)
=20—0y=— [ ——22"—" 1 dlog Zn(bo)
N 0000 N 90
Consider
1 0%log Zn(0 1 L 9210g. 2 ) ~
NW Z1 t=0 0000 —p H(0) as N — oo,

. N T—1 82log Z;,;.+(0 . A ~ .
where H(0) = limy_00 & Diey By D yo %Ww' Since 0 converges to 6y and 0 lies

between 6§ and 6, H(é) converges to H(fp). So
N T-1

1 02log Ly (0 1 921og Z:;4(0)
_ 30y H N .
N 900 N < ; 2606 (o) as N = o0
Therefore,

VN(0 — 6p)

o i@QIOgZN(é) T dlog Ly (6)
~ ~\ ¥ o000 JN o0

1 02log Zn(0) GIOgZHt(QO)
- _<N 5006" ) fz<z )
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T d1og 2., 4(00)
where {Z R 1 =1,2,- - ,N} are independent. Then, according to Linde-
=0

berg’s central limit theorem, v/ N (é — 6p) is asymptotically normally distributed with the

mean vector equal to 0 and the variance-covariance matrix being

= dlo 2100 — dlo Zi1(00 / -1
<Z gTH) (Z gTU> ] H(b)™".

Heo 1]&13%0—ZE

The asymptotic variance can thus be approximated by

t=0 t=0

Var(0 — 6,)

P1og.2(0)\ = [ [ Olog Zs0(00) | (= Dlog Z,00(00) )
(Fhan@) 3| (S Pt (5 2e )

9?log Z,(0) -
“\ ™ o000
B Estimating distance-to-default (DTD)

This appendix briefly reviews the Merton (1974) model and explains the numerical scheme
employed to calculate distance-to-default. Merton’s model assumes that firms are fi-
nanced by equity and one single pure discount bond with maturity date 7" and principal

L. The asset value V; follows geometric Brownian motion:
dVy = pVidt + oV, dBs.

Due to limited liability, the equity value at maturity is Fr = max(Vy — L,0). Therefore,
the equity value at time t < T by the Black-Scholes option pricing formula becomes

E, =ViN(dy) —e """ YLN(d, — oV/T — 1) (14)

where r is the instantaneous risk-free rate, N(-) is the cumulative distribution function

for standard normal random variable, and
In(V;/L) + (r + 02/2)(T — t)

oV —t '
According to Merton’s model, the company’s bankruptcy probability at time ¢ is N(—DTD,)
where DTD, denotes distance-to-default and it is

In(V;/L) + (n— o /2)(T - t)
oI —t '

dt:

(15)

DTD, =

To implement Merton’s model, the so-called KMV assumption is typically adopted

which sets T'—t to one year and L to the firm’s book measure of short-term debt plus one
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half of its long-term debt. The KMV implementation assumption becomes problematic
for financial firms. Financial firms typically have large amount of liabilities that are
neither classified as short-term nor long-term debt, and thus the KMV assumption will

grossly understate the amount of debt.

In order to deal with for financial firms, we follow Duan (2010) to include a firm’s
other liabilities which is adjusted by a fraction. Denote this unknown fraction by § and
note the resulting debt level used in estimation is a function of ¢, i.e., L(d). This unknown
fraction can be estimated along with g and 0. The KMV assumption can therefore be
viewed a special case by setting 6 = 0. Our estimation method does not preclude the

estimated fraction to become zero.

Following Duffie, Saita, and Wang (2007), we measure the short-term debt as the
maximum of “Debt in current liabilities” and “Total current liabilities”. A firm’s other
liabilities are defined as total liabilities minus short-term debt and then minus long-term
debt. Hence, the liability measure L(J) equals short-term debt plus one half of the long-

term debt and plus a fraction of the other liabilities.

We then apply the maximum likelihood estimation method developed in Duan (1994,
2000) to estimate the unknown fraction together with the asset return’s mean and stan-
dard deviation. Since a firm’s asset value could significantly change with a major invest-
ment and financing action, it makes more sense to standardize the firm’s market value
of assets by its book value so that the pure scaling effect will not distort the parameter
values in the time series estimation. We thus divide the model’s implied asset value by
its book asset value in constructing the log-likelihood function. Obviously, if the book
asset value stays unchanged throughout the sample period, such standardization will not

have any effect. The log-likelihood function is

L(,0.6) = —nglln(Qw)—%Zln(azht Zl( ) Zln (dy(0,)))

~ 2
_i 1 n Vt(UafS) XAt—l _( —0—2)11
— 20’2ht ‘;;_1(0'7 5) At K 2 ¢

where n is the total number of equity values in the time series sample, V, is the model’s

implied asset value solved using equation (14), d, is computed using equation (15) with
V;, A, is the book asset value, and h; is the length of time between two consecutive equity
values (measured in trading days as a fraction of a year). Introducing h; is mainly to take
care of missing equity values in the sample. Note that § becomes part of the log-likelihood
function through L(4).
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To avoid the “look-ahead bias”, we employ a rolling window method to estimate DTD.
More specifically, at the end of each month, we estimate DTD for each firm using its daily
market values of equity capitalization in the preceding year. We set the DTD to a missing
value if there are less than 50 valid equity values in the preceding year. Whenever there
are three or more consecutive equity values being identical, we will only consider the first
and the last equity values in the sequence to be valid. The last valid DTD is used as the
final DTD of each estimation.
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Figure 1. Parameter estimates for the forward default intensity function

This figure shows the parameter estimates for the forward default intensity function
corresponding to different prediction horizons. Bailout is the exponential decaying term
for the bailout effect, S&P500 is the trailing 1-year S&P500 index return, Treasury rate
is the 3-month US Treasury rate, DTD is the distance to default, CASH/TA is the sum
of cash and short-term investments over the total assets, NI/TA is the net income over
the total assets, SIZE is log of firm’s market equity over the average market equity value
of the S&P500 company, M/B is the market to book equity value ratio, SIGMA is the
1-year idiosyncratic volatility. The subscript “level” denotes the average in the preceding
12 months, “trend” denotes the difference between its current value and the preceding
12-month average. The solid line is for the parameter estimates and the dotted lines

depict the 90% confidence interval.
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Figure 1. Parameter estimates for the forward default intensity function
(Cont’d)
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Figure 2. Aggregate number of defaults

This figure shows the observed (bars), in-sample predicted (solid line) and out-of-sample
predicted (dashed line) aggregate number of defaults for different prediction horizons. At
each month-end, we compute the expected number of defaults in 1 month, 3 months, 6
months, 12 months, 24 months, 36 months and compare them with the observed values in
the intended periods. The in-sample results are generated using the parameters estimated
over the whole sample. At each month-end starting from January 2001, we re-estimate
the model using all the data available up to that time and compute the out-of-sample

predicted number of defaults for different prediction horizons.
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Figure 3A. In-sample cumulative accuracy profiles

This figure shows the in-sample cumulative accuracy profiles (power curves) based on all

firms and the entire sample period (1991 to 2010) for different prediction horizons.
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Figure 3B. Out-of-sample (cross-section) cumulative accuracy profiles

This figure shows the out-of-sample cumulative accuracy profiles (power curves) over
the entire sample period (1991-2010) for different prediction horizons. We divide the
firms equally into two groups: estimation group and evaluation group. We estimate the
parameters based on the estimation group and then evaluate the prediction accuracy

using the evaluation group.
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Figure 3C. Out-of-sample (over time) cumulative accuracy profiles

This figure shows the out-of-sample cumulative accuracy profiles (power curves) for the
sample period (2001-2010) for different prediction horizons. We re-estimate the model at
each month-end starting from the first month of 2001 and using only the data available

at that time for estimation.
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Figure 4. Lehman Brothers’ term structure of forward and cumulative

default probabilities

This figure shows the estimated term structure of forward default probabilities and that
of cumulative default probabilities for Lehman Brothers, Merrill Lynch, Bank of America
as well as the average values of the financial sector at 36 months, 24 months, 12 months
and 3 months before Lehman Brothers’ bankruptcy filing date (September 15, 2008).
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Table 1. Number of defaults and other exits

Total number of active firms, defaults/bankruptcies and other exits for each year over
the sample period 1991-2010. The number of active firms is computed by averaging over

the number of active firms across all months of the year.

Year Active Firms Defaults/Bankruptcies (%)  Other Exit (%)

1991 4018 28 0.70% 258 6.42%
1992 4016 23 0.57% 333 8.29%
1993 4194 16 0.38% 213 5.08%
1994 4428 13 0.29% 281 6.35%
1995 5064 18 0.36% 396 7.82%
1996 9453 16 0.29% 472 8.66%
1997 5641 46 0.82% 953 9.80%
1998 9705 66 1.16% 749 13.13%
1999 5423 73 1.35% 745 13.74%
2000 2086 102 2.01% 616 12.11%
2001 4912 156 3.18% 283 11.87%
2002 4675 80 1.71% 403 8.62%
2003 4336 62 1.43% 370 8.53%
2004 4073 24 0.59% 306 7.51%
2005 3920 23 0.59% 292 7.45%
2006 3852 19 0.49% 283 7.35%
2007 3764 21 0.56% 353 9.38%
2008 3672 57 1.55% 290 7.90%
2009 3581 70 1.95% 246 6.87%
2010 3385 32 0.95% 228 6.74%
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Table 2. Summary statistics of firm-specific attributes

Summary statistics for the firm-specific attributes.

DTD is the distance-to-default,

CASH/TA is cash and short-term investments over the total assets, NI/TA is the net
income over the total assets, SIZE is log of firm’s market equity value over the average
market equity value of an S&P500 company, M/B is the market to book ratio, SIGMA is

the 1-year idiosyncratic volatility. The subscript “level” denotes the average in the pre-

vious 12 months, “trend” denotes the difference between current value and its previous

12-month average.

Mean
DTDieyer 3.630
DTDtrend 0.021
CASH/TA,.,, 0.170
CASH/TA,,..4 -0.004
NI/TA,, -0.010
NI/TA, .4 -0.001
SIZEevel -4.359
SIZE: end -0.035
M/B 1.953
SIGMA 0.142

Std
2.875
1.796
0.212
0.063
0.062
0.054
2.033
0.362
1.921
0.104

Min
-1.364
-7.298
0.000
-0.291
-0.411
-0.368
-8.654
-1.473
0.455
0.024

25%
1.621
-0.962
0.026
-0.019
-0.008
-0.007
-5.854
-0.200
1.029
0.073

Median
3.139
0.040
0.073
-0.002
0.005
0.000
-4.509
-0.021
1.301
0.114

5%
5.056
1.045
0.235
0.014
0.016
0.007

-3.030
0.150
2.064
0.177

Max
16.582
6.255
0.931
0.271
0.080
0.268
1.437
1.180
15.561
0.718
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Table 6. Accuracy ratios

This table reports the accuracy ratios derived from the cumulative accuracy profiles
based on rank orders. Panel A reports the in-sample results for all firms and the entire
sample period (1991-2010). Panel B presents the out-of-sample (cross-section) results
for the entire sample period (1991-2010) where we equally divide the firms into two
groups: estimation group and evaluation group. We estimate the parameters based on
the estimation group and then evaluate the prediction accuracy using the evaluation
group. Panel C reports the out-of-sample (over time) results for the sample period (2001-
2010). We re-estimate the model at each month-end starting from the first month of 2001
and use only the data available at the time for estimation. For each panel, we report the
results for the full sample, the non-financial sub-sample and the financial sub-sample. The
full-sample accuracy ratios based on the smoothed parameter values are also reported,

where smoothing is performed by applying the Nelson-Siegel (1987) method.

Panel A: In-sample result

1 month 3 months 6 months 12 months 24 months 36 months

Full sample 92.81% 90.85% 88.06% 82.70% 73.44% 65.69%
Full sample (smoothed) 92.88%  90.91%  88.11% 82.67% 73.42% 65.67%
Non-financial 92.52% 90.33% 87.34% 81.78% 73.00% 65.92%
Financial 95.17% 94.49% 92.92% 89.07% 76.07% 58.32%

Panel B: Out-of-sample (cross-section) result

1 month 3 months 6 months 12 months 24 months 36 months

Full sample 92.42%  89.89% 86.42% 80.69% 71.48% 64.00%
Full sample (smoothed) 92.12%  89.75% 86.46% 80.73% 71.45% 64.00%
Non-financial 92.05%  89.35% 85.57% 79.66% 71.23% 64.49%
Financial 98.02%  96.64% 95.63% 90.51% 75.85% 55.62%

Panel C: Out-of-sample (over time) result

1 month 3 months 6 months 12 months 24 months 36 months

Full sample 91.74%  90.06% 87.24% 82.39% 75.90% 69.80%
Full sample (smoothed) 91.71%  90.10%  87.18% 82.26% 76.00% 69.78%
Non-financial 91.70%  89.94%  87.02% 82.03% 75.99% 70.18%
Financial 94.61% 93.81% 91.90% 88.79% 81.57% 71.62%
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Table 7. Comparing the forward intensity model with the DSW model

This table reports the accuracy ratios for the forward intensity model and the DSW model

developed in Duffie, et al (2007). We randomly select 3,000 non-financial firms to conduct

the tests. The covariates as well as the autoregressive model are same as Duffie, et al

(2007). Panel A reports the in-sample results for all firms and the entire sample period

(1991-2010). Panel B still employs the in-sample estimates but reports the results for the

period 2001-2010 which coincides with the period for the out-of-sample tests. Panel C

reports the out-of-sample (over time) results for the sample period (2001-2010). For the

out-of-sample comparison, we re-estimate both models at the end of January 2001 and

use only the data available at that time of estimation.

Panel A: In-sample result (1991-2010)

1 month 3 months 6 months 12 months 24 months 36 months
DSW (2007) 90.56%  89.29% 87.68% 85.17% 81.62% 79.60%
Forward Intensity  90.56%  88.65% 85.71% 80.65% 71.85% 65.91%
Panel B: In-sample result (2001-2010)

1 month 3 months 6 months 12 months 24 months 36 months
DSW (2007) 90.96%  90.28% 88.62% 87.67% 83.46% 79.42%
Forward Intensity  90.96%  89.96% 87.29% 85.01% 78.73% 73.84%
Panel C: Out-of-sample (over time) result (2001-2010)

1 month 3 months 6 months 12 months 24 months 36 months
DSW (2007) 91.21%  90.12% 87.08% 81.80% 69.05% 62.19%
Forward Intensity 91.21%  90.36% 87.81% 85.51% 78.63% 74.25%
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