Structure and mechanical properties of nanoporous silica and organosilicate glasses

Jincheng Du (杜 金成)

Department of Materials Science and Engineering Center for Advanced Scientific Computing and Modeling (CASCaM)

University of North Texas, Denton, Texas, USA

Meiji University, 7/21/2015

UNIVERSITY OF NORTH*TEXAS[®] Discover the power of ideas.

QUALITY | VALUE | OUTCOME

UNIVERSITY OF NORTH*TEXAS Discover the power of ideas.

QUALITY | VALUE | OUTCOME

UNT at a Glance

- Established in 1890
- Student-focused public research university
- **97** bachelor's, **88** master's, and **40** doctoral degree programs
- Faculty-to-student ratio: 20:1
- 36,500 students
- 2,671 international students
- 121 countries represented

UNIVERSITY OF NORTH*TEXAS[™] Discover the power of ideas.

QUALITY | VALUE | OUTCOME

Location

"The Best College Town in Texas"

nalit

- Denton, Texas, is small, safe, & friendly
- Sunny, warm climate
- About 40 miles north of Dallas
- 28 miles from DFW airport

QUALITY | VALUE | OUTCOME

Rankings and Recognition

"Best of the West" The Princeton Review ®

Named one of *America's* **100 Best College Buys** ® for 15 consecutive years

UNIVERSITY OF NORTH*TEXAS[®] Discover the power of ideas.

QUALITY | VALUE | OUTCOME

1st in the world Environmental Ethics & Philosophy Largest in the world Play Therapy Training Facility
1st in U.S. Jazz Studies
2nd in U.S. Health Librarianship
9th in U.S., 1st in Texas
9th in U.S., 1st in Texas
9th in U.S., 1st in Texas
Master's in Public Administration
13th in U.S.
MA/PhD in Art History
First Tier Regional Program
BBA in Management
Top 8 Undergraduate Programs
Radio, Television, Film
15th in U.S.
Library Science
20th in U.S.
BS Emergency Administration

& Planning

National Rankings

Many UNT graduate degree programs selected as among the nation's best by *U.S. News & World Report's* graduate school rankings.

UNIVERSITY OF NORTH*TEXAS Discover the power of ideas.

QUALITY | VALUE | OUTCOME

Research

- Ranked in the top 4% of U.S. universities as a Doctoral/Research university-Extensive, by Carnegie Foundation.
- More than 70 research and service centers, including the new **Castleberry Peace Institute**.
- Innovative **Research Clusters** working across disciplines and linking faculty, students, and research in new ways.

UNT College of Engineering

- Established in 2003
- Six departments o 12 BS degrees
 - o 6 MS degrees
 - o 5 PhD degrees
- 75 T/TT Faculty
- 12 Lecturers
- 2,637 students
- (*2013 data)

Located in a 550,000 sq.ft. building in the middle of a 290 acre Discovery Park

UNT Engineering Degree Programs

- BA Information Technology
- BS Computer Science
- BS Computer Engineering
- BS Electrical Engineering
- BS Mechanical and Energy Engineering
- BS Materials Science and Engineering
- BS in Engineering Technology in
 - Construction
 - Electrical
 - Nuclear
 - Mechanical
- BS Biomedical Engineering

- MS Computer Science
- MS Computer Engineering
- MS Electrical Engineering
- MS Mechanical and Energy Engineering
- MS Materials Science and Engineering
- MS Engineering Systems
- MS Biomedical Engineering
- PhD Computer Science and Engineering
- PhD Materials Science and Engineering
- PhD Mechanical and Energy Engineering
- PhD Electrical Engineering

Functional Glasses and Materials Modeling Group Jincheng Du, Depart. Material Sci. & Eng., Univ. North Texas

Focus on atomistic and *ab initio* computer simulation methods to understand the structure and structural origin of material properties of glass/ceramics, nano- and complex-structured materials for biomedical, microelectronic, energy and environmental applications.

Current projects:

UNIVERSITY OF

- Atomic structure property correlations of multicomponent oxide glasses (NSF,)
- Chemical durability and dissolution of bioactive and nuclear waste glasses (DOE)
- Defects and mechanical behaviors of complex oxide ceramics (NSF, coll. T. Scharf)
- Bulk and surface electronic properties of ZnO based ceramics (NSF, coll. N. Shepherd)
- Lithium ion solid state electrolytes: ceramics and glass-ceramics based.
- Bonding, defects and properties of Ni-based super alloys (ISES, coll. R. Banerjee)
- Plasma interaction and radiation effects in dielectric materials (SRC, coll. J. Kelber)

Outline

- Background and motivations
- Simulation methodologies
- Atomic and micro-structures of nanoporous silica
- Mechanical properties of nanorpous silica
- Organosilicate glass structures using ReaxFF
- AIMD simulations of plasma interactions
- Conclusions

Thermal insulation

Hydrogen storage

Separation/ Molecular sieves

microelectronics 12

Low k dielectrics and plasma etching

- Low k dielectric material such as porous organosilicate glass (OSG) has been used in Very Large Scale Integration (VLSI) in advanced microelectronic devices.
- Decrease of k values can limit RC delay and cross talk caused by shrinking device features
- Plasma etching is commonly used in subtractive processes
- Further deterioration of mechanical property of OSG
- Increase of dielectric constant by preferentially removing organic component
- Creating dangling bonds and change surface chemistry

Interconnect Structure Figure 1: Plasma-Interconnect Structure

Case, Carlye. "Fundamentals of Low-k Chemistry". Future Fab International. 17 (2004)

OSG low k materials for micro/nano-electronics

Dense SiO ₂	3.9-4.2			
F-Doped SiO ₂	3.7			
Low k dielectrics	2-3			
Vacuum	1			

Organosilicate Glass (OSG) is a type of low-K dielectric material to replace silica (SiO₂) to continue the scaling of microelectronic devices (Moore's law).

Two mechanisms to decrease the dielectric constant: organic groups and porosity.

Key issues:

SCOVER THE POWER OF IDE

- Decrease of mechanical properties
- Porosity leads to water diffusion and deterioation of properties UNIVERSITY OF ORTH*TEXAS[®]

Yuan et al, Microelectr. Reliab. 2008,

* ... each is distinct but each is strongly connected to the other two * The goal (of simulation) is to create an understanding of physical properties or processes as complete as possible, making use of perfect "experimental" conditions in the "computer experiment"...

Materials Science and Engineering 15

Molecular Dynamics (MD) simulations

- U

MD is an atomistic computer simulation method.

MD relies on solution of equation of motion of Newton's classical mechanics.

$$m_i \ddot{r_i} = f_i$$
 $f_i = -\frac{1}{6}$

Classical MD:

based on empirical potential

$$u(r^{N}) = \sum_{i} \sum_{j>i} v(r_{i}, r_{j}) + \sum_{i} \sum_{i} \sum_{k} w(r_{i}, r_{j}, r_{k}) + \dots$$

Fitting experimental crystal structure, physical properties Fitting potential energy surface from *ab initio* calculations

ab initio MD:

Hellmann-Feynman theorem Quantum mechanically obtained force: HF, DFT, MP2 etc

Born-Oppenheimer MD (BOMD) Car-Parrinello MD (CPMD)

Simulation methodologies

Classical MD with partial charge pairwise potential (Teter parameters):
 DLPOLY

$$V(r_{ij}) = \frac{q_i q_j e^2}{4 \pi \epsilon r_{ij}} + A \exp(-r_{ij}/\rho) - C/r_{ij}^{6}$$

Du and Cormack, J. Am. Ceram. Soc. 2005

• Classical MD with Reactive Force Field (ReaxFF): LAMMPS

 $E = E_{\text{bond}} + E_{\text{angle}} + E_{\text{torsion}} + E_{\text{lone pair}} + E_{\text{conjugation}} + E_{\text{H-bond}} + E_{\text{vdWaals}} + E_{\text{Coulomb}}$

Fogarty et al, J. Chem. Phys. 132, 174704 (2010)

• *ab initio* MD based on DFT. GGA-PBE functional: CP2k

Born Oppenheimer dynamics

Double zeta Gaussian basis set

Variable time step setup for cascade simulations

VandeVondele, J, et al. Comput. Phys. Comm. 167 (2005) 103

Validation of structure model: silica glass

- Partial charge pairwise potential with Teter parameters (*Du and Cormack, J. Am. Ceram. Soc. 2005*)
- Comparison with neutron structure factor and total correlation function of silica glass from MD simulations. (*Du and Cormack, J. Non-Cryst. Solids, 2004*).

Routes for nanoporous silica generations

Volume scaling method:

Dense silica glass from MD simulations

Nano Porous Silica

Linear scaling followed annealing at 1500K under NVT. Further relaxation under NVT and NPT at 300 K. Nakona et al, PRB 491(1994).

Charge scaling method:

- Start from low density homogeneous silica by applying low charges (20%)
- The charges are gradually increased charge to facilitate aggregation and solidfication.
- Thermalization run under NPT to stablize the structure under ambient pressure.

Beckers, de Leeuw, J. Non-Cryst. Solids 261 (2001).

Structure Comparison

Volume scaling method

Final Porosities: 22.9%

Final Densities: 1.83 g/ml Surface Area/Occupied Volume: 0.56

Red: Oxygen

38 A

Charge Scaling method

Final Porosities: 17.2% Final Densities: 2.16 g/ml Surface Area/Occupied Volume: 0.26

Yellow: Silicon

Microstucture characterization

- Volume scaling generated nanoporous silica with wide nominal porosity (0-90%). Charge scaling generated structures with 30-95% porosity.
- Pore micro structure morphology was found to be different for the two methods. Volume scaling gave more spherical but isolated pores but charge scaling gives more open and connected pores.

Atomic Structure Analysis

Porous silica with 40% porosity

Coordination Defects

Ring statistics

- Primitive ring statistics showing higher number of smaller and larger rings as compared to dense silica glass.
- The percentage of two membered rings increase with porosity but saturate at around 30% porosity for the volume scaling method.

Mechanical properties

- Elastic constants of porous silica with 50% porosity differs significantly by the two formation methods.
- Both are in the range of available experimental values.

Mechanical properties vs. porosity

- Power and exponential forms were used to fit the elastic constant data.
- Exponential fits resulted poorer fit with 3–4 times higher R values than the power functions.
- Fitting in power form give parameters similar to experimental sol-gel generated silica glass in different solvent. (*Jain et al, Thin Solid Film 2001*)

Organosilicate glass (OSG) structure

Structure models of OSG

DRIH*

- Generated based on nanoporous silica.
- Hydroxylation and addition of organic groups on internal surfaces
- Interaction with water and water diffusion in OSG.
- Simulation using MD with ReaxFF and AIMD.

OSG structures and mechanical properties

Plasma etching simulations

ab initio molecular dynamics based on DFT

- Not limited by potential development
- Allows for unpredictable bond breakage and formation

Cascade Simulations

- Setup of variable time steps (0.05-1.0fs)
- Maximum atomic movement = 0.02Å per step
 - Maintain high resolution
- Thermostat is applied to the bottom 1/3 of the simulation
- Initial Ar-surface distance is 15Å
- 4000 step simulations (0.5-1.2ps)
- 25 unique simulations were preformed

Schematic of cascade simulation setup

Juerg Hutter. The Journal of chemical physics 127.11 (2007): 114105.

Molecular abstraction due to Ar plasma

- Molecule were removed in ٠ 26% of the simulations
- Si is rarely removed ٠
 - Si is pushed into the • **OSG** structure
- H atoms are removed most ٠ often
- Carbon is removed as both ٠ CH₃ and CO molecules

Condition:

Ar atom, 100eV, normal incidence, 20Åx20Å surface **Products:**

H₂, CO, and CH₃ molecules removed

DISCOVER THE POWER OF IDE

Common removed molecules (percentage of total removed molecules)

				J		. /			
	Removed Molecule	H(%)	H ₂ (%)	H ₂ O(%)	CO(%)	CH ₃ (%)	SiO(%)	OH(%)	
	Percentage	22.22	11.11	11.11	11.11	22.22	11.11	11.11	
	UNIVERSITY OF	-	H. Kazi, J. Rimsza, J. Kelber, J. Du, Journal of Vacuum Science &						
I	ORTH *TFYAS			Techno	ology A 32.5 (20	14): 051301.		20	

Change of network connectivity

- Network connectivity after collision cascade impact
- Perfect silica structure = 4.0 connectivity
- During plasma impact there is a connectivity loss of ~0.08
- A portion of the Si-O network reforms (connectivity increases by ~0.04)

OSG connectivity with time average over the 25 simulations. Error bars are equal to the standard error.

Free Oxygen Concentrations

- Atomic oxygen radicals are generated after Ar bombardment
- Spike in the free oxygen during initial impact
- Free oxygen concentrations stabilize (molecules diffuse into the vacuum)
- Free atomic oxygen energies are between (8-18eV)
- Threshold energies for CH₃ removal is as low as 0.1 eV

Free oxygen concentrations with time averaged over the 25 simulations. Error bars are equal to the standard error.

M. Chaudhari, J. Du, et al. Applied Physics Letters 94.20 (2009): 204102-204102.

CH₃ Removal – Mechanism 1

- Ar impacts the OSG surface generating a free oxygen species (7.34eV)
- Free O radical reacts with a surface Si with a terminal CH₃ group
- The CH₃ is removed and an O replaces the CH₃ forming a NBO group
- Previous cluster TMCTS calculations indicated a 0.1eV threshold for Si-CH₃ breakage by O at an angled attack

(a) initial and (b) final atomic positions for CH_3 removal by reaction mechanism 1. Yellow is silicon, red is oxygen, and white is hydrogen.

CH₃ Removal – Mechanism 1

Condition: Ar atom, 100eV, normal incidence, 20Åx20Å surface Products: free oxygen generated (7.7eV), methyl radical formation UNIVERSITY OF DISCOVER THE POWER OF IDEAS.

CH₃ Removal – Mechanism 2

- Ar impacts a bridging oxygen in the structure
- This forces the O into the Si which moves and breaks the Si-CH₃ bond
- The CH₃ diffuses into the vacuum and the Si³ remains unbonded

(a) initial and (b) final atomic positions for CH_3 removal by reaction mechanism 2. Yellow is silicon, red is oxygen, white is hydrogen, and blue is argon.

Conclusions

- Realistic structure models of nanoporous silica and porous organosilicate glass (OSG) with wide range of porosity have been generated using molecular dynamics simulations with ReaxFF.
- Mechanical properties were calculated and correlated with porosity and more morphologies. Power and exponential empirical fitting were compared.
- Ar plasma collision cascade reactions were studied using AIMD simulations and reaction mechanisms for carbon abstraction identified.
- Water confined in nanoporous silica were studied using AIMD and there are challenges to enable reactions on some highly reactive sites in MD simulations.

Acknowledgements

Collaborators:

Jeff Kelber (UNT) Harsono Simka (Intel Inc.) Joe Ryan (PNNL)

Graduate students:

Mrunal Chaudhari, Jessica Rimsza, Lu Deng

Funding support from:

NSF, SRC, DOE

