An introduction to soft active matter through some examples from cell and tissue mechanics

Philippe Marcq

Université Pierre et Marie Curie Institut Curie Paris

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Outline

- 2 Soft and active cells
 - Contractility
 - Contractile actomyosin bundles
 - Lamellipodial motility
 - Polarity patterns
- Soft and active tissues
 - Cellular aggregates
 - Epithelization of model circular wounds
 - Collective migration of a proliferating epithelium

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Cytoskeletal polymers

Actin

G-Actin: monomers

- molecular weight 45kDa
- size $\delta = 5.5$ nm
- ATP binding pocket
- polar monomer

F-Actin: polymers

- 2 protofilaments
- right-handed helix
- 72nm pitch
- 24 monomers per turn

Actin cytoskeleton

Electron microscopy G. Borisy

- Fish keratocyte
- Lamellipodium
- Mesh size 50 nm

Cryoelectron tomography W. Baumeister

- Dictyostelium discoideum
- Network of branched and crosslinked filaments

▲□▶▲□▶▲□▶▲□▶ □ のQで

Actin-binding proteins

・ロト・日本・日本・日本・日本・日本・日本

Outline

Active polymers

2 Soft and active cells

Contractility

- Contractile actomyosin bundles
- Lamellipodial motility
- Polarity patterns

3 Soft and active tissues

- Cellular aggregates
- Epithelization of model circular wounds
- Collective migration of a proliferating epithelium

▲□▶▲□▶▲□▶▲□▶ □ のQで

Molecular motors (I)

- molecular weight 520 kDa
- size 150nm
- two-headed
- binds ATP and actin

Walking on actin R. Vale

- Fuel: ATP hydrolysis
- Motion towards barbed end

イロト 不得 とうほう 不良 とう

-

Molecular motors (II)

Contraction: adjacent F-actin moved by myosin filaments

Lamellipodium G. Borisy

Immunogold labeling Contraction: stress in the gel

・ロト・日本・ モー・ モー・ シック

In vitro active gels

Actin Myosin $\alpha\text{-}\text{Actinin gel}$

- Actin myosin α -actinin gel in a 400 μm diameter capillary
- ATP introduced at time t = 0

Bendix et al., Biophys. J. (2008)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Single cell rheology

Creep measurement

- Weak power law increase of creep $J(t) \sim t^{\alpha}$, $\alpha \approx 0.2$
- Complex elastic modulus $G(\omega) \sim \omega^{\alpha}$
- Large distribution of relaxation times

Here: simplified rheologies

Balland et al., Phys. Rev. E (2006)

Outline

Active polymers

2 Soft and active cells

• Contractility

• Contractile actomyosin bundles

- Lamellipodial motility
- Polarity patterns

3 Soft and active tissues

- Cellular aggregates
- Epithelization of model circular wounds
- Collective migration of a proliferating epithelium

▲□▶▲□▶▲□▶▲□▶ □ のQで

Contractile actomyosin bundles

Fibroblasts Swiss Nanoscience Institute

Arterial endothelial cells Kaunas et al., PNAS (2005)

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Elastic modulus of a stress fiber

Pulling on a stress fiber

- Aortic endothelial cells without ATP
- (Linear) elastic modulus $E \approx 10^5 10^6$ Pa

Deguchi et al., J. Biomech. (2006)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Force-extension data

Stress fibers: active contractility

Stress fibers (a) contract upon addition of ATP (b)

Katoh et al., Mol. Biol. Cell (1998)

ヘロト 人間 とくほとく ほとう

-

General framework: hydrodynamics

Models simple enough to allow for analytical treatment without neglecting crucial physical ingredients.

- ignore signaling
- mesoscopic scales: $\Delta x \gg \xi$ mesh size of the polymer network
- few parameters (elastic moduli,...)

Simplified rheology: constitutive equation for an active solid In the simplest case (*e.g.* 1D or isotropic)

$$\sigma^{\text{total}} = \sigma^{\text{elastic}} + \sigma^{\text{active}} = G e + \sigma_A$$

 σ : stress; *e*: strain; *G*: elastic modulus; σ_A : active stress

Yoshinaga and Marcq, Phys. Biol. (2012)

Ablation of a stress fiber

- Endothelial cells (bar: 2 μ m)
- Retracted length: independent of initial radius
- Contraction time: independent of initial radius, seconds

Kumar et al., Biophys. J. (2006)

Physical origin of the retraction time?

Exponential relaxation with a single time scale

$$l(t) = l_0 - \Delta l \left(1 - e^{-t/\tau} \right)$$

Model of the bundle as a viscoelastic solid

$$au = rac{\eta}{E}$$

Dissipation due to protein friction

Cross-linker turn-over: strained cross-linkers store elastic energy that is dissipated upon unbinding.

Dynamic proteins

FRAP experiments

Fluorescence Recovery After Photobleaching

- Osteosarcoma cells
- Bar: 5 μm
- Half-recovery time

Hotulainen et al., J. Cell Biol. (2006)

▲□▶▲□▶▲□▶▲□▶ = つくで

Protein friction explains the viscosity of the bundle

In 1D: $F_z = n_X k_X v_z \tau_X = \zeta_p v_z$

- n_X average number of attached crosslinkers per filament
- k_X spring constant of a crosslinker
- τ_X average binding time of a crosslinker

 $\Rightarrow \zeta_p \approx n_X \ k_X \ \tau_X$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Protein friction explains the viscosity of the bundle

In 1D: $F_z = n_X k_X v_z \tau_X = \zeta_p v_z$

- n_X average number of attached crosslinkers per filament
- k_X spring constant of a crosslinker
- τ_X average binding time of a crosslinker

 $\Rightarrow \zeta_p \approx n_X k_X \tau_X$

In 3D: $\sigma_{zz}^{(p)} = \eta_p \frac{\partial v_z}{\partial z} \approx \eta_p \frac{U}{L}$, $\sigma_{zz}^{(p)} = n_F \frac{\zeta_p v_z}{A}$ and $v_z \approx U \frac{l_F}{L}$

- n_F average number of filaments per cross-section
- l_F length of a filament:
- A bundle cross-section

$$\Rightarrow \eta_p \approx n_F \; \frac{l_F}{A} \; \zeta_p$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contraction time

Viscosity coefficient $\eta_p \approx n_F n_X \frac{l_F}{A} k_X \tau_X$.

Contraction time

Viscosity coefficient $\eta_p \approx n_F n_X \frac{l_F}{A} k_X \tau_X$.

Elastic modulus $E \approx n_F n_X \frac{l_X}{A} k_X$ Since $\sigma_{zz}^{(el)} = E \frac{\partial u_z}{\partial z} \approx E \frac{\Delta Z}{L}$, $\sigma_{zz}^{(el)} = n_X \frac{k_X \Delta z}{A}$ and $\Delta z \approx \Delta Z \frac{l_X}{L}$ • l_X length of a cross-linker

Contraction time

Viscosity coefficient $\eta_p \approx n_F n_X \frac{l_F}{A} k_X \tau_X$.

Elastic modulus $E \approx n_F n_X \frac{l_X}{A} k_X$ Since $\sigma_{zz}^{(el)} = E \frac{\partial u_z}{\partial z} \approx E \frac{\Delta Z}{L}$, $\sigma_{zz}^{(el)} = n_X \frac{k_X \Delta z}{A}$ and $\Delta z \approx \Delta Z \frac{l_X}{L}$ • l_X length of a cross-linker

Viscoelastic time $au = \frac{\eta_p}{E}$

- $l_F \approx 1 \ \mu m$
- $l_X \approx 0.1 \ \mu \text{m}$
- $\tau_X \approx 1 10$ s

$$\Rightarrow \tau pprox rac{l_F}{l_X} au_X pprox 10^1 - 10^2
m s$$

independent of initial radius and length

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contraction of an active viscoelastic solid 1D model

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Contraction of an active viscoelastic solid 1D model

Force balance $\eta_p \frac{de}{dt} + E e + \sigma_A = 0$ • l(t) bundle length • $e(t) = \frac{l(t) - l_0}{l_0}$ longitudinal strain • σ_A active stress Strain relaxation $e(t) = e_{\infty} (1 - e^{-t/\tau})$

After relaxation: Initial velocity: $egin{aligned} e_{\infty} &= -rac{\sigma_A}{E} \ |v_0| &= |e_{\infty}| \; rac{l_0}{ au} \propto \sigma_A \end{aligned}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Active stress

Measurement $\sigma_A = E |e_{\infty}|$ with $|e_{\infty}| \approx 10^{-1}$ $\Rightarrow \sigma_A^{SF} \approx 10^4$ Pa OK!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Active stress

Measurement $\sigma_A = E |e_{\infty}|$ with $|e_{\infty}| \approx 10^{-1}$ $\Rightarrow \sigma_A^{SF} \approx 10^4$ Pa

Estimate $\sigma_A \approx n_F n_X^A \frac{F_S}{A}$

- $n_X^A \approx 10$ average number of active crosslinkers per filament
- $F_S \approx 1 \text{ pN}$ stall force of a motor
- $\Rightarrow \ \sigma_A^{SF} \approx 10^4 \ {\rm Pa} \qquad \qquad {\rm CONSISTENT}$

OK!

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Active stress

Measurement $\sigma_A = E |e_{\infty}|$ with $|e_{\infty}| \approx 10^{-1}$ $\Rightarrow \sigma_A^{SF} \approx 10^4$ Pa

OK!

Estimate $\sigma_A \approx n_F n_X^A \frac{F_S}{A}$

- $n_X^A \approx 10$ average number of active crosslinkers per filament
- $F_S \approx 1$ pN stall force of a motor
- $\Rightarrow \ \sigma_A^{SF} \approx 10^4 \ \text{Pa}$ CONSISTENT

Retracted length $\Delta l = \frac{\sigma_A}{E} l_0 \approx \frac{F_S}{k_X l_X} l_0$

independent of initial radius

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contraction of an active viscoelastic solid 3D model

Geometry: cylinder of initial radius a_0 and length L_0

Homogeneous and isotropic material

- elastic moduli (K, G) or (E, ν)
- (bulk) viscosity η_p
- active stress σ_A

Exact solution

When the initial state is the elastic reference state:

$$\frac{L(t) - L_0}{L_0} = \frac{a(t) - a_0}{a_0} = -\frac{\sigma_A}{3K} \left(1 - e^{-t/\tau_K}\right) \text{ with } \tau_K = \frac{\eta_P}{3K}$$

The bundle contracts longitudinally and radially independently of the value of the Poisson ratio ν .

Contraction of actomyosin bundles: conclusion

- The contraction time of actomyosin bundles is a viscoelastic time equal to the ratio of protein friction viscosity to elastic modulus
- Simple scaling arguments yieldw
 - ightarrow the order of magnitude of au
 - \rightarrow the order of magnitude of σ_A
- Cross-over to visco-poroelasticity when

$$a_0 \gg a_c \approx \left(\frac{n_F l_F \zeta_p}{\eta_c} \xi^2\right)^{1/4} \approx 10 \ \mu m$$

• Obvious need for more quantitative data, from reconstituted bundles?

Yoshinaga and Marcq, Phys. Biol. (2012)

Outline

Active polymers

2 Soft and active cells

- Contractility
- Contractile actomyosin bundles

• Lamellipodial motility

- Polarity patterns
- 3 Soft and active tissues
 - Cellular aggregates
 - Epithelization of model circular wounds
 - Collective migration of a proliferating epithelium

▲□▶▲□▶▲□▶▲□▶ □ のQで

Motility of Keratocyte cells

Verkhovsky

Gliding motion

10 µm

Figure 16-07b Molecular Biology of the Cell 5/e (1) Garland Science 2008

Fish keratocyte Fast motion: 10μ m/min. Constant shape

Cell fragments

イロト イポト イヨト イヨト

Current Biology

Cell motility: biological model

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure 16-86 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Quantitative data

Actin velocity field

Data

- Velocity field obtained by speckle microscopy Valloton et al.
- Advancing velocity $u = 10 \,\mu$ m/min.
- Retrograde flow $v = 1 \,\mu$ m/min.
- Stress distribution on the substrate $\sigma_{xz} = 4 \ 10^2 \text{ Pa}$ Oliver et al.
- Actin viscosity $\eta = 10^5$ Pa.s Käs et al.

▲□▶▲□▶▲□▶▲□▶ □ のQで

One dimensional lamellipodium

Actin dynamics

- Fully polarized p = 1
- v_p polymerization velocity at the front
- v_d depolymerization velocity at the rear
- $U = v(L) + v_d = v(0) + v_p$

Mechanics

- Mass conservation $\frac{d}{dx}h(v+U) = k_p \rho_{wa}(x)$
- Active viscous liquid $\sigma = 2\eta \frac{\partial v}{\partial x} + \sigma_A$
- Momentum conservation $\frac{d}{dx}h\sigma = \xi v$
Results

- No movement at the center of lamellipodium
- Retrograde flow at the front
- Anterograde flow at the rear
- Zero total cell-substrate force
- Non-zero external force dipole

Kruse et al. Phys. Biol. 2006

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

Active polymers

2 Soft and active cells

- Contractility
- Contractile actomyosin bundles
- Lamellipodial motility
- Polarity patterns
- 3 Soft and active tissues
 - Cellular aggregates
 - Epithelization of model circular wounds
 - Collective migration of a proliferating epithelium

▲□▶▲□▶▲□▶▲□▶ □ のQで

A polar structure: alternating polarity

- Ptk2 cells (kidney epithelium), bar: 0.2 μ m
- Actin decorated with S1 myosin heads
- Wavelength $\lambda \simeq 1 \ \mu m$

Cramer et al., J. Cell Biol. (1997)

A polar structure: graded polarity

Onset of motility

. . .

イロト 不得 とうほう 不良 とう

э

Fibroblasts bar: $0.2 \ \mu m$

Cramer et al., J. Cell Biol. (1997)

Stress fiber as a 1D active polar elastomer

Hydrodynamic model of a stress fiber ...

- on mesoscopic scales
- in 1D
- as a one-component system
- elasticity: G
- activity: $\Delta \mu$
- polarity: a, K, γ
- coupling between polarity and elasticity: *w*
- coupling between polarity and activity: α, β

Polar order parameter $\mathbf{p} = p(z, t) \mathbf{e}_{\mathbf{z}}$

- Mesoscopic average of the polarity of actin filaments
- Boundary conditions: p(0,t) = -1 p(L,t) = +1(barbed ends face focal adhesions)

Yoshinaga et al., Phys. Rev. Lett. (2010)

Statics

Invariance under $p \rightarrow -p, z \rightarrow -z$

Free energy density

obtained by quadratic expansion close to p = 0, e = 0

$$f = \frac{1}{2}a p^2 + \frac{1}{2}K \left(\frac{\partial p}{\partial z}\right)^2 + \frac{1}{2}G e^2 + w e \left(\frac{\partial p}{\partial z}\right)$$

Thermodynamic stability $\Rightarrow w^2 \leq K G$

Conjugate variables

molecular field $h = -\frac{\delta f}{\delta p} = -a p + K \partial_z^2 p + w \partial_z e$ elastic stress $\sigma^{\text{el}} = \frac{\delta f}{\delta e} = G e + w \partial_z p.$

Constitutive relations

Entropy production rate

From thermodynamics and conservation equations:

$$\frac{R}{T} = \left(\sigma + P - \sigma^{\rm el}\right) \, \partial_z v + h \, \dot{p} + \Delta \mu \, r$$

The 'chemical' term $\Delta \mu r$ models motor activity.

Linear couplings between fluxes and forces

$$\sigma + P - \sigma^{\text{el}} = \eta \partial_z v + (-\zeta + \beta \partial_z p) \Delta \mu$$
$$\dot{p} = \frac{h}{\gamma} - \alpha p \partial_z p \Delta \mu$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Passive fiber $\Delta \mu = 0$

Force balance

$$\partial_z \sigma = 0 \Rightarrow G \ \partial_z e + w \ \partial_z^2 p = 0$$

Polarization dynamics

$$\tau_p \; \frac{\partial p}{\partial t} = -p + l^2 \; \frac{\partial^2 p}{\partial z^2}$$

•
$$\tau_p = \frac{\gamma}{a} > 0$$

• $l^2 = \frac{K}{a} \left(1 - \frac{w^2}{GK} \right) > 0$

Stationary solution: monotonically increasing polarity

$$p(z) = -\cosh(z/l) + \frac{1 + \cosh(L/l)}{\sinh(L/l)} \sinh(z/l)$$

Without contractility: polarity patterns are graded

Active fiber $\Delta \mu \neq 0$

Force balance

$$\partial_z \sigma = 0 \Rightarrow G \ \partial_z e + (w + \beta \ \Delta \mu) \ \partial_z^2 p = 0$$

Polarization dynamics damped Burgers equation

$$\frac{\partial p}{\partial t} + \alpha \Delta \mu \ p \ \frac{\partial p}{\partial z} = -\frac{a}{\gamma} \ p + D \ \frac{\partial^2 \mu}{\partial z^2}$$

$$D = \frac{K}{\gamma} \left[1 - \frac{w^2}{KG} \left(1 + \frac{\beta \Delta \mu}{w} \right) \right]$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Diffusion constant may change sign D = 0 when $\frac{\beta \Delta \mu}{w} = \frac{KG}{w^2} - 1$

Active fiber $\Delta \mu \neq 0$

Phase diagram

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

D > 0: graded polarity pattern

$$\frac{\beta \Delta \mu}{w} < \frac{KG}{w^2} - 1$$

Evolution equation for the polarity field

$$rac{\partial p}{\partial ilde{t}} + p rac{\partial p}{\partial ilde{z}} = -p + ilde{D} \; rac{\partial^2 p}{\partial ilde{z}^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

$\tilde{D} < \tilde{D}_c = -2\sqrt{\tilde{\nu}} < 0$: alternating polarity pattern

Evolution equation for the polarity field

$$\frac{\partial p}{\partial \tilde{t}} + p \frac{\partial p}{\partial \tilde{z}} = -p + \tilde{D} \frac{\partial^2 p}{\partial \tilde{z}^2} - \tilde{\nu} \frac{\partial^4 p}{\partial \tilde{z}^4}$$

Existence of stable periodic stationary solutions with a wavelength λ :

$$\lambda^{2} = \frac{8\pi^{2}\nu}{K} \left[\frac{w^{2}}{KG} \left(1 + \frac{\beta\Delta\mu}{w} \right) - 1 \right]^{-1}$$

- A bifurcation explains the existence of graded and alternating polarity patterns in stress fibers.
- Active contractility is a necessary condition for the emergence of alternating polarity patterns.

• The wavelength of alternating polarity patterns is a function of the contractility and of the stiffness of the fiber.

$$\begin{split} \lambda^{-2} &= a + b \ \Delta \mu \\ \lambda^{-2} &= c + d/G \end{split}$$

• The bifurcation also occurs for viscoelastic materials.

Secondary bifurcation: propagating waves

Rheology: (Maxwell) viscoelastic liquid

Here with periodic boundary conditions: rotating ring

Possible applications

- Rotating contractile ring during cytokinesis
- Mechanical waves in collectively migrating epithelia

Marcq, Eur. Phys. J. E (2014)

Acknowledgements

Physico-Chimie Curie

- Jean-François Joanny
- Jacques Prost

Tohoku University

Natsuhiko Yoshinaga

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Cadherin-mediated cell-cell adhesion

Measurement of cell-doublet separation force

Murine sarcoma S180 cells with variable E-Cadherin expression

Chu et al. J. Cell Biol. 2004

イロト 不得 トイヨト イヨト ニヨー

Outline

Active polymers

2 Soft and active cells

- Contractility
- Contractile actomyosin bundles
- Lamellipodial motility
- Polarity patterns

Soft and active tissues

- Cellular aggregates
- Epithelization of model circular wounds
- Collective migration of a proliferating epithelium

▲□▶▲□▶▲□▶▲□▶ □ のQで

Surface tension of a cellular aggregate

Measurement
$$\sigma = \frac{F}{2\pi R_3^2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} \approx 1 - 10 \,\mathrm{mN}\,\mathrm{m}^{-1}$$

4

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Surface tension of a cellular aggregate

Measurement
$$\sigma = \frac{F}{2\pi R_3^2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} \approx 1 - 10 \,\mathrm{mN}\,\mathrm{m}^{-1}$$

Cell sorting

Foty et al Dev Biol 2005 ogg

Spreading of a cellular aggregate (I)

Spreading coefficient $S = \gamma_{SO} - (\gamma_{CS} + \gamma)$ Since $\gamma_{CS} = (\gamma_{SO} + \gamma) - W_{CS}$ and $2\gamma = W_{CC}$, we also have

 $S = W_{CS} - W_{CC}$

- if S < 0, θ is finite: partial wetting
- if S > 0, the drop spreads: complete wetting

Douezan et al. PNAS 2011

▲□▶▲□▶▲□▶▲□▶ □ のQで

Spreading of a cellular aggregate (II)

In vitro Epithelial-Mesenchymal Transition?

Gonzalez-Rodriguez et al. Science 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Aspiration of a cellular aggregate (I)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Aspiration of a cellular aggregate (I)

A viscoelastic liquid $L(t) = \frac{f}{k_1} \left(1 - \frac{k_2}{k_1 + k_2} e^{-t/\tau_c} \right) + \frac{f}{\xi_t} t$

Guevorkian et al. Phys. Rev. Lett. 2010

Aspiration of a cellular aggregate (II)

Orders of magnitude

- Elastic modulus $E \approx 700$ Pa
- Viscosity $\eta \approx 2 \, 10^5$ Pa s
- Surface tension $\gamma \approx 5 \text{ mN m}^{-1}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Aspiration of a cellular aggregate (II)

Orders of magnitude

- Elastic modulus $E \approx 700$ Pa
- Viscosity $\eta \approx 2 \, 10^5$ Pa s
- Surface tension $\gamma \approx 5 \text{ mN m}^{-1}$

Active reinforcement of the surface tension $\Delta P_c = 2\gamma (\frac{1}{R_p} - \frac{1}{R})$

Guevorkian et al. Phys. Rev. Lett. 2010

Outline

Active polymers

2 Soft and active cells

- Contractility
- Contractile actomyosin bundles
- Lamellipodial motility
- Polarity patterns

Soft and active tissues

- Cellular aggregates
- Epithelization of model circular wounds
- Collective migration of a proliferating epithelium

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Motivation: collective cell migration during development

Drosophila dorsal closure

Martin et al. Dev. 2004

Zebrafish Lateral line primordium

Haas et al. Dev. Cell 2006

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Model wounds: experimental set-up

Seed cells and wait for confluence

Remove pillars and image.

Example of an experiment, GFP-actin

Large variability

Cochet-Escartin et al., Biophys. J. (2014)

Quantitative data

MDCK cells

Closure time

Model

No apoptoses and few cell divisions ($t_{\rm div} \approx 20$ h) Few cell rearrangements Homogeneous, isotropic material

Incompressibility: div $\vec{v} = 0 \Rightarrow v_r(r, t) = \frac{R(t)\dot{R}(t)}{r}$

Force balance

$$\operatorname{div} \sigma = \xi \, \bar{v}$$

Constitutive equation $\sigma_{rr} = -p(r, t)$

Boundary conditions

$$\sigma_{rr}(r = R(t)) = \sigma_p$$

$$\sigma_{rr}(r = R_{\max}) = -p_0$$

·□···Jonas=Ranft ∽৫?

Simplest model: inviscid fluid, no cable

Epithelization coefficient $D = \frac{\sigma_P}{\xi}$ Cut-off radius R_{max}

Closure time

Trajectories

 $t(R) = \frac{R_0^2}{4D} \left(1 + 2\ln\left(\frac{R_{\max}}{R_0}\right) \right) - \frac{R^2}{4D} \left(1 + 2\ln\left(\frac{R_{\max}}{R}\right) \right),$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Alternative hypotheses

▲□▶▲□▶▲□▶▲□▶ □ のQで

The following additional ingredients are negligible:

- Cable tension: $\frac{\gamma}{\sigma_p R_0} \ll 1$
- Epithelial viscosity: $\frac{\eta}{\xi R_0^2} \ll 1$
- Epithelial elasticity: $\frac{\mu}{\sigma_p} \ll 1$

- protrusive stress σ_p dominates force generation
- epithelium-substrate friction ξ dominates dissipation
- closure dynamics is characterized by the epithelization coefficient $D = \sigma_p / \xi$
- measured values of *D* allow to tell apart cell types and conditions

• order of magnitude estimate of the friction coefficient $\sigma_p / \xi \approx 10^2 \,\mu\text{m}^2 \,\text{h}^{-1}$ and $F_p \approx 1 \,\text{nN} \Rightarrow \xi \approx 1 \,\text{nN} \,\mu\text{m}^{-3} \,\text{s}$

Closure dynamics on a non-adhesive substrate

30 h

 $60~{\rm h}$

- Without protrusions
- Without friction
- Longer closure time $t_c \simeq 10 \, \text{h}$
- With a contractile pluricellular cable

Maxime Deforet, Guillaume Duclos

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Experimental data: noisy wound healing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Model

Force balance at the tissue edge

$$-\zeta \dot{r} - \frac{\gamma}{r} + F(t) = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

- ζ effective friction coefficient
- γ line tension of the contractile cable
- F(t) random force
Force balance at the tissue edge

$$-\zeta \dot{r} - \frac{\gamma}{r} + F(t) = 0$$

- ζ effective friction coefficient
- γ line tension of the contractile cable
- F(t) random force

$$\dot{r} = -\frac{\gamma^*}{r} + \sqrt{2D}\,\eta(t)$$

Vincent Nier Sace

Parameters

- $\gamma^* = \frac{\gamma}{\zeta}$ reduced line tension
- D diffusion coefficient
- η Gaussian white noise

Probabilistic description

 $f_{\rm c}(R,t)$ fraction of patches of radius R closed at time t

 $f_c(R,t) = \operatorname{Prob}(t_c(R) \le t) = 1 - \int_0^R p(R',t \mid R,0) \, \mathrm{d}R'$

Probabilistic description

 $f_{\rm c}(R,t)$ fraction of patches of radius R closed at time t

$$f_c(R,t) = \operatorname{Prob}(t_c(R) \le t) = 1 - \int_0^R p(R',t \mid R,0) \, \mathrm{d}R'$$

Backward Kolmogorov equation

$$\frac{\partial f_{\rm c}}{\partial t} = -\frac{\gamma^*}{R} \frac{\partial f_{\rm c}}{\partial R} + D \frac{\partial^2 f_{\rm c}}{\partial R^2}$$

- *R* reflecting boundary
- 0 absorbing boundary

Least-squares fit

$$\gamma^* = 10.0 \,\mu \text{m}^2 \,\text{h}^{-1}$$
 [6,13]
 $D = 1.6 \,\mu \text{m}^2 \,\text{h}^{-1}$ [0.5,3.9]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Least-squares fit

$$\gamma^* = 10.0 \,\mu \text{m}^2 \,\text{h}^{-1}$$
 [6,13]
 $D = 1.6 \,\mu \text{m}^2 \,\text{h}^{-1}$ [0.5,3.9]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Initial mean square deviation

Diffusive behaviour at early times

Model prediction

 $\langle (r(0) - r(t))^2 \rangle = 2Dt$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Linear regression $\Rightarrow D = 1.5 \,\mu \text{m}^2 \,\text{h}^{-1}$ [1.0, 2.0]

Alternative hypotheses

$$\dot{r} = -\frac{\gamma^*}{r} + \sigma^* + \sqrt{2\left(D + \frac{D_{\gamma}}{r^2}\right)} \eta(t)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Alternative hypotheses

$$\dot{r} = -\frac{\gamma^*}{r} + \sigma^* + \sqrt{2\left(D + \frac{D_{\gamma}}{r^2}\right)\eta(t)}$$

Cable tension fluctuation D_{γ}

The following additional ingredients are negligible:

- Tissue tension: $\frac{\sigma^* R}{\gamma^*} \ll 1$
- Cable tension fluctuation: $\frac{D_{\gamma}}{DR^2} \ll 1$

Conclusions

- cable contractility (line tension γ) dominates force generation
- noise cannot be neglected : $\frac{D}{\gamma^*} \simeq \frac{1}{6}$
- order of magnitude estimate of the friction coefficient $\gamma/\zeta \approx 10 \,\mu\text{m}^2 \,\text{h}^{-1}$ and $\gamma \approx 1 \,\text{nN} \Rightarrow \zeta \approx 10^2 \,\text{nN} \,\mu\text{m}^{-2} \,\text{s}$
- order of magnitude estimate of tension fluctuations $\Delta \sigma^2 = D \zeta^2 \approx 10^{-1} \text{ nN}^2 \,\mu\text{m}^{-2} \text{ h}$ much larger than thermal fluctuations $\Delta \sigma^2 = \frac{k_B T}{2} \approx 10^{-6} \text{ nN}^2 \,\mu\text{m}^{-2} \text{ h}$

$$\Delta \sigma_{\text{thermal}}^2 = \frac{\kappa_{\text{B}T}}{2\pi R\xi} \approx 10^{-6} \,\text{nN}^2 \,\mu\text{m}^{-2}\,\text{k}$$

Nier et al., submitted (2014)

Outline

Active polymers

2 Soft and active cells

- Contractility
- Contractile actomyosin bundles
- Lamellipodial motility
- Polarity patterns

Soft and active tissues

- Cellular aggregates
- Epithelization of model circular wounds
- Collective migration of a proliferating epithelium

▲□▶▲□▶▲□▶▲□▶ □ のQで

Collective cell migration along a channel

э

S.R.K. Vedula et al., PNAS (2012)

- Geometry: 1D, $x \in [0 L(t)]$
- Cell number balance: $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = -\frac{1}{\tau_{\text{div}}} \frac{\rho \rho_{\text{div}}}{\rho_{\text{div}}} \rho$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- Constitutive equation: $\sigma = -p(\rho)$
- Momentum conservation: $\frac{\partial \sigma}{\partial x} = \xi v$ $\Rightarrow v = \frac{1}{\xi} \frac{\partial \sigma}{\partial x} = -\frac{1}{\xi} p'(\rho) \frac{\partial \rho}{\partial x}$

- Geometry: 1D, $x \in [0 L(t)]$
- Cell number balance: $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = -\frac{1}{\tau_{\text{div}}} \frac{\rho \rho_{\text{div}}}{\rho_{\text{div}}} \rho$
- Constitutive equation: $\sigma = -p(\rho)$
- Momentum conservation: $\frac{\partial \sigma}{\partial x} = \xi v$ $\Rightarrow v = \frac{1}{\xi} \frac{\partial \sigma}{\partial x} = -\frac{1}{\xi} p'(\rho) \frac{\partial \rho}{\partial x}$ $\frac{\partial \rho}{\partial t} - \frac{1}{\xi} \frac{\partial}{\partial x} \left(p'(\rho) \rho \frac{\partial \rho}{\partial x} \right) = -\frac{1}{\tau_{\text{div}}} \frac{\rho - \rho_{\text{div}}}{\rho_{\text{div}}} \rho$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- Geometry: 1D, $x \in [0 L(t)]$
- Cell number balance: $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = -\frac{1}{\tau_{\text{div}}} \frac{\rho \rho_{\text{div}}}{\rho_{\text{div}}} \rho$
- Constitutive equation: $\sigma = -p(\rho)$
- Momentum conservation: $\frac{\partial \sigma}{\partial x} = \xi v$ $\Rightarrow v = \frac{1}{\xi} \frac{\partial \sigma}{\partial x} = -\frac{1}{\xi} p'(\rho) \frac{\partial \rho}{\partial x}$ $\frac{\partial \rho}{\partial t} - \frac{1}{\xi} \frac{\partial}{\partial x} \left(p'(\rho) \rho \frac{\partial \rho}{\partial x} \right) = -\frac{1}{\tau_{\text{tiv}}} \frac{\rho - \rho_{\text{div}}}{\rho_{\text{div}}} \rho$
- Boundary conditions
 - Front: $\sigma(x = L(t), t) = \sigma_p$
 - Back: $(\rho v) (x = 0, t) = 0$
 - Kinematic: $v(x = L(t), t) = \dot{L}(t)$

Pierre Recho

The Fisher-Kolmogorov equation

An equation of state $p(\rho) = E \ln(\rho/\rho_{el})$

$$v = \frac{1}{\xi} \frac{\partial \sigma}{\partial x} = -\frac{E}{\xi} \frac{1}{\rho} \frac{\partial \rho}{\partial x} \Rightarrow \frac{\partial \rho}{\partial t} = \frac{E}{\xi} \frac{\partial^2 \rho}{\partial x^2} + \frac{1}{\tau_{\text{div}} \rho_{\text{div}}} \rho \left(\rho_{\text{div}} - \rho\right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

The Fisher-Kolmogorov equation

An equation of state $p(\rho) = E \ln(\rho/\rho_{el})$

$$v = \frac{1}{\xi} \frac{\partial \sigma}{\partial x} = -\frac{E}{\xi} \frac{1}{\rho} \frac{\partial \rho}{\partial x} \Rightarrow \frac{\partial \rho}{\partial t} = \frac{E}{\xi} \frac{\partial^2 \rho}{\partial x^2} + \frac{1}{\tau_{\text{div}} \rho_{\text{div}}} \rho \left(\rho_{\text{div}} - \rho\right)$$

A propagating front

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Front velocity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Front velocity

Order of magnitude $V \approx 10^0 \,\mu \mathrm{m} \,\mathrm{h}^{-1}$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- $E \approx 10^3$ Pa
- $\xi \approx 10^{-2} \,\mathrm{Pa}\,\mathrm{m}^{-2}\,\mathrm{s}$
- $\tau_{\rm div} \approx 10^4 \, {\rm s}$

Influence of viscosity?

$$\sigma = -E \ln(\rho/\rho_{\rm el}) + \eta \, \frac{\partial v}{\partial x}$$

Dimensionless viscous coefficient

$$\tilde{\eta} = \frac{\eta}{E \, \tau_{\rm div}} \approx \frac{10^5}{10^3 \, 10^4} \approx 10^{-2}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Influence of viscosity?

$$\sigma = -E \ln(\rho/\rho_{\rm el}) + \eta \, \frac{\partial v}{\partial x}$$

Dimensionless viscous coefficient

$$\tilde{\eta} = \frac{\eta}{E \, \tau_{\rm div}} \approx \frac{10^5}{10^3 \, 10^4} \approx 10^{-2}$$

Profile

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Extension to 2D: dependence on confinement

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Extension to 2D: dependence on confinement

S.R.K. Vedula et al., PNAS (2012)

Propagating waves

How to include active motility?

X. Serra-Picamal et al., Nat. Phys. (2012)

ヘロト 人間 とくほとう ほとう

э

- experimental tests?
- how to model cell contractility and bulk cell motility?
- how can a propagating wave solution become unstable?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• *in vivo* collective cell migration?

Acknowledgements

Physico-Chimie Curie Vincent Nier Pierre Recho Pascal Silberzan Olivier Cochet-Escartin Maxime Deforet Guillaume Duclos Hannah Yevick

Physique Statistique, ENS Jonas Ranft Institut Jacques Monod Benoît Ladoux René-Marc Mège Rima Sedikki

Mechanobiology Institute Shreyansh Jain Thuan Beng Saw

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you!