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Significance and challenges

* Accurate representation of freeze/thaw processes
needed for

— climate models and projections

— hydrologic models and forecasts
— wintertime energy balance studies

* Few methods for monitoring soil thermal
properties during freeze/thaw

* Few methods for monitoring soil heat flux during
freeze/thaw

Theory (Fuchs et al., 1978)
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where C'is soil volumetric heat capacity (M] m=3 K-, T'is tempera-
wure (K), #is time (s), Lyis the latent heat of fusion for water (J kg™1),
S, is the mass rate of ice formation (kg m=?s7!), z is depth (m), X is
the soil thermal conductivity (W m~! K1), Jyis the liquid water flux
(m3 m=2 s71), and ( is the volumetric heat capacity of liquid water
(M] m—3 K—l)' R

Theory (Fuchs et al., 1978)
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where p; is the density of liquid water (kg m3) and 0, is the soil liquid
water content (m® m=3). By the chain rule, we can then write
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Theory (Fuchs et al., 1978)

Inserting Eq. [3] into Eq. [1] and grouping similar terms gives
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The complete term in parentheses on the left-hand side of Eq. [4] is
the apparent volumetric heat capacity, C,, which may be interpreted
as the quantity of heat required to raise the temperature of a unit
volume of soil by 1 K while a phase change between liquid water and
ice is occurring.

Theory (Fuchs et al., 1978)
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where K is the soil hydraulic conductivity, 1 is the matric poten-
tial, and 1, is the gravitational potential. Omitting the gravity-driven
water flux, which is of minimal significance in freezing soil (Fuchs et
al., 1978), and applying the chain rule again, we obtain
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Theory (Fuchs et al., 1978)

Inserting Eq. [6] into Eq. [4] gives
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where the apparent thermal conductivity, X, is defined as
)
A, =>\"'PlLfKﬁ (8]
oT
The apparent thermal conductivity may be interpreted as the heat flux

per unit temperature gradient that occurs while temperature gradients
are driving liquid water flow in soil at subfreezing temperatures.

Measurements
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Theory (Fuchs et al., 1978)

hear transfer in partially frozen soil can be approximated by
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and the soil heat flux, G, by
G=-X,0T/dz [10]

which includes both sensible heat transfer by conduction and latent
hear transfer due to thermally induced liquid water flow.

* University of Minnesota research farm
¢ Rosemount, Minnesota, USA, 44.7°N, 93.1 °W

Field experiment

Silt loam soil
No tillage, soybean residue
4 heat pulse sensors each
at 2.5 and 5 cm depths
Temperature
measurements at 5 minute
intervals

Thermal properties
measured at 30 minute
intervals

Freezing, Nov.-Dec.
Thawing, Feb.-Mar.

Thermal property measurements
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where ¢’ is the heating rate (W mb), ty is the heating duration (s), ¢
is the base of the natural logarithm, 7] is the maximum temperature
rise (K) at a distance 7 (m) from the heater, and  is 7y/z, with 7|
being the time (s) from the beginning of heating until 7} occurs
(Knight and Kluitenberg, 2004).
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https://stackoverflow.com/questions/53609536/draw-state-lines-of-specific-countries-with-cartopy

Soil temperature (°C)
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Soil temperatures during freezing
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Fig. 1. November and December 2006 soil temperatures at 2.5- and 5-cm

pths in Waukegan silt loam under soybean residue in Field G19.
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Soil thermal properties
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during freezing
E
* Abrupt, large increase in C; as =
T falls below freezing point, )
— due to latent heat of fusion < *
* Abrupt, large increase in A, §m w
— due to latent heat transfer by T

liquid flow
* Abrupt, large decrease in a,

* Good agreement between
measured and modeled values
for G, less so for A, and o,

— extended monitoring period
required
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Soil temperatures and thermal

properties during thawing
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3. February and March 2007 soil temperatures (top panel), and mea-
sured soil apparent heat capacity (C,) at 2.5-cm depth and appar-
ent thermal conductivity (\)) at 5-cm depth (bottom panel).

Soil thermal properties

during thawing H
* Maximum C, ~800 M) m3 K!
* Narrow spike in A, just below T °
freezing point g

— confirmation of theoretical
model

— Maximum value ~100 W m1 K1

* 5-minute monitoring period
allowed o, measurements
down to 0.03 mm?s? 10°
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Measured vs modeled thermal properties
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Fig. 6. Measured vs. modeled soil apparent heat capacity (C,) during ~Fig. 7. Measured vs. modeled apparent thermal diffusivity (c.,) dur-
a February and March 2007 thawing event.

Modeled C, (MJ m®K™!) Modeled o, (mm?s™)

ing a February and March 2007 thawing event.

Heat puIse curves during thawing
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Fig. 5. Selected heat pulse curves recorded by a single sensor at 2.5-cm
depth on 21 Feb. 2007 for three different ambient temperatures
(symbols). Corresponding modeled heat pulse curves (lines) were
based on the assumptions discussed in relation to Eq. [11-13].




Soil heat flux during thawing
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Fig. 8. March 2007 instantaneous (upper panel) and cumulative
(lower panel) heat fluxes at the soil surface.

For more details:
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Final thoughts

* Challenging measurements
— Temperature rise due to heat pulse may be <0.005°K

— Two-point running harmonic mean used here for
effective noise reduction

Mean absolute differences between measured
and modeled thermal properties, 20-37%

* Accurate in situ soil heat flux measurements
during freeze/thaw are possible

Latent heat flux due to snowmelt infiltration
detectable with this approach
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